Encyclopedia of Lipidomics

Living Edition
| Editors: Markus R. Wenk

Gas Chromatography of Volatile Lipid Oxidation Products

  • Michel Guichardant
  • Nathalie Bernoud Hubac
  • Baptiste Fourmaux
  • Madeleine Picq
  • Patrick Molière
  • Michel Lagarde
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-7864-1_69-1

Introduction

Volatile lipid oxidation products derive mainly from oxidation of polyunsaturated fatty acids (PUFA) (Frankel 1982). They have been widely characterized in biological systems (Frankel 1980, 1982, 1984; Uchida 2000) as well as in foods (Jayasena et al. 2013; Hugo et al. 2014). Among them, aldehydes are the most important volatile substances which result as secondary oxidative products issued from the breakdown of hydroperoxide intermediates (Frankel 1982, 1987; Allan and Angello 1996) formed during PUFA peroxidation. They generate off-flavor in food (Cheng 2010; Wilkes et al. 2000) with detrimental consequences on food quality and consumer acceptability. “In vivo” hydroxy-aldehydes such as 4-hydroxy,2-trans/E-hexenal (4-HHE) (Grasse et al. 1985; Guichardant et al. 2006; Domingues et al. 2013) and 4-hydroxy,2-trans/E-nonenal (4-HNE) (Pryor and Porter 1990; Csala et al. 1852) have been reported to be very toxic since they can react with free primary amine groups to form...

Keywords

Lipoic Acid Michael Adduct Free Aldehyde Hydrophilic Matrix Free Primary Amine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Andreoli R, Manini P, Corradi M, Mutti A, Niessen WM. Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:637–45.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allan J. St. Angelo. Lipid oxidation in food. Critical Reviews in Food Science in Nutrition 1996;36:175–224.Google Scholar
  3. Bacot S, Bernoud-Hubac N, Baddas N, Chantegrel B, Deshayes C, Doutheau A, Lagarde M, Guichardant M. Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses. J Lipid Res. 2003;44:917–26.CrossRefPubMedGoogle Scholar
  4. Bacot S, Bernoud-Hubac N, Chantegrel B, Deshayes C, Doutheau A, Ponsin G, Lagarde M, Guichardant M. Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals. J Lipid Res. 2007;48:816–25.CrossRefPubMedGoogle Scholar
  5. Barrera G, Gentile F, Pizzimenti S, Canuto RA, Daga M, Arcaro A, Cetrangolo GP, Lepore A, Ferretti C, Dianzani C, Muzio G. Mitochondrial dysfunction in cancer and neurodegenerative diseases: spotlight on fatty acid oxidation and lipoperoxidation products. Antioxidants. 2016;5:1. Review.CrossRefGoogle Scholar
  6. Benedetti A, Comporti M, Fulceri R, Esterbauer H. Cytotoxic aldehydes originating from the peroxidation of liver microsomal lipids: identification of 4,5-dihydroxydecenal. Biochim Biophys Acta, Lipids Lipid Metab. 1984;9:172–81.CrossRefGoogle Scholar
  7. Calzada C, Colas R, Guillot N, Guichardant M, Laville M, Véricel E, Lagarde M. Subgram daily supplementation with docosahexaenoic acid protects low-density lipoproteins from oxidation in healthy men. Atherosclerosis. 2010;208:467–72.CrossRefPubMedGoogle Scholar
  8. Castegna A, Lauderback CM, Mohmmad-Abdul H, Butterfield DA. Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: implications for Alzheimer’s disease. Brain Res. 2004;1004:193–7.CrossRefPubMedGoogle Scholar
  9. Cheng H. Volatile flavor compounds in yogurt: a review. Crit Rev Food Sci Nutr. 2010;50:938–50. Review.CrossRefPubMedGoogle Scholar
  10. Chung F-L, Nath RG, Ocando J, Nishikawa A, Zhang L. Deoxyguanosine adducts of t-4-hydroxy-2-nonenal are endogenous DNA lesions in rodents and humans: detection and potential sources. Cancer Res. 1984;44:990–5.PubMedGoogle Scholar
  11. Cohen G, Riahi Y, Shamni O, Guichardant M, Chatgilialoglu C, Ferreri C, Kaiser N, Sasson S. Role of lipid peroxidation and PPAR-δ in amplifying glucose-stimulated insulin secretion. Diabetes. 2011;60:2830–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Coulon L, Calzada C, Moulin P, Vericel E, Lagarde M. Activation of p38 mitogen-activated protein kinase/cytosolic phospholipase A2 cascade in hydroperoxide-stressed platelets. Free Radic Biol Med. 2003;35:616–25.CrossRefPubMedGoogle Scholar
  13. Csala M, Kardon T, Legeza B, Lizák B, Mandl J, Margittai É, Puskás F, Száraz P, Szelényi P, Bánhegyi G. On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta. 1852;2015:826–38. Review.Google Scholar
  14. Domingues RM, Domingues P, Melo T, Pérez-Sala D, Reis A, Spickett CM. Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics. 2013;92:110–31. Review.CrossRefPubMedGoogle Scholar
  15. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128. Review.CrossRefPubMedGoogle Scholar
  16. Ferderbar S, Pereira EC, Apolinário E, Bertolami MC, Faludi A, Monte O, Calliari LE, Sales JE, Gagliardi AR, Xavier HT, Abdalla DS. Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus. Diabetes Metab Res Rev. 2007;23:35–42.CrossRefPubMedGoogle Scholar
  17. Frankel EN. Lipid oxidation. Prog Lipid Res. 1980;19:1–2.CrossRefPubMedGoogle Scholar
  18. Frankel EN. Volatile lipid oxidation products. Prog Lipid Res. 1982;22:1–3.CrossRefGoogle Scholar
  19. Frankel EN. Chemistry of free radical and singlet oxidation of lipids. Prog Lipid Res. 1984;23:197–221.CrossRefPubMedGoogle Scholar
  20. Frankel EN. Secondary products of lipid oxidation. Chem Phys Lipids. 1987;44:2–4.CrossRefGoogle Scholar
  21. Fukuda M, Kanou F, Shimada N, Sawabe M, Saito Y, Murayama S, Hashimoto M, Maruyama N, Ishigami A. Elevated levels of 4-hydroxynonenal-histidine Michael adduct in the hippocampi of patients with Alzheimer’s disease. Biomed Res. 2009;30:227–33.CrossRefPubMedGoogle Scholar
  22. Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, Cotman C, Cottrell B, Montine TJ, Thomas RG, et al. Alzheimer’s disease cooperative study. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol. 2012;69:836–41.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Grasse LD, Lamé MW, Segall HJ. In vivo covalent binding of trans-4-hydroxy-2-hexenal to rat liver macromolecules. Toxicol Lett. 1985;29:43–9.CrossRefPubMedGoogle Scholar
  24. Guichardant M, Taibi-Tronche P, Fay LB, Lagarde M. Covalent modifications of aminophospholipids by 4-hydroxynonenal. Free Radic Biol Med. 1998;25:1049–56.CrossRefPubMedGoogle Scholar
  25. Guichardant M, Chantegrel B, Deshayes C, Doutheau A, Moliere P, Lagarde M. Specific markers of lipid peroxidation issued from n-3 and n-6 fatty acids. Biochem Soc Trans. 2004;32:139–40.CrossRefPubMedGoogle Scholar
  26. Guichardant M, Bacot S, Molière P, Lagarde M. Hydroxy-alkenals from the peroxidation of n-3 and n-6 fatty acids and urinary metabolites. Prostaglandins Leukot Essent Fatty Acids. 2006;75:179–82. Review.CrossRefPubMedGoogle Scholar
  27. Henderson AP, Bleasdale C, Delaney K, Lindstrom AB, Rappaport SM, Waidyanatha S, Watson WP, Golding BT. Evidence for the formation of Michael adducts from reactions of (E, E)-muconaldehyde with glutathione and other thiols. Bioorg Chem. 2005;33:363–73.CrossRefPubMedGoogle Scholar
  28. Hoff HF, O’Neil J, Chisolm GM, Cole TB, Quehenberger O, Esterbauer H, Jurgens G. Modification of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages. Arteriosclerosis. 2009;9:538–49.CrossRefGoogle Scholar
  29. Honzatko A, Brichac J, Picklo MJ. Quantification of trans-4-hydroxy-2-nonenal enantiomers and metabolites by LC-ESI-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;857:115–22.CrossRefPubMedGoogle Scholar
  30. Hugo A, Souza L, Bragagnolo N. New method for the extraction of volatile lipid oxidation products from shrimp by headspace–solid-phase micro-extraction–gas chromatography–mass spectrometry and evaluation of the effect of salting and drying. J Agric Food Chem. 2014;62:590–9.CrossRefGoogle Scholar
  31. Ibrahim S, Guillot N, Pruneta-Deloche V, Charrière S, Calzada C, Guichardant M, Moulin P, Lagarde M, Ponsin G. Alterations in the transfer of phospholipids from very-low density lipoproteins to activated platelets in type 2 diabetes. Atherosclerosis. 2009;203:19–25.CrossRefGoogle Scholar
  32. Jayasena DD, Ahn DU, Nam KC, Jo C. Flavour chemistry of chicken meat: a review. Asian-Australas J Anim Sci. 2013;26:732–42.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jeffrey BG, Weisinger HS, Neuringer M, Mitchell DC. The role of docosahexaenoic acid in retinal function. Lipids. 2001;36:859–71.CrossRefPubMedGoogle Scholar
  34. Li D, Ellis EM. 4-Hydroxynonenal induces an increase in expression of receptor 1 for activating C kinase 1 (RACK1) in Chinese hamster V79-4 lung cells. Chem Biol Interact. 2014;213:13–20.CrossRefPubMedGoogle Scholar
  35. Liu YM, Jinno H, Kurihara M, Miyata N, Toyo’oka T. Determination of 4-hydroxy-2-nonenal in primary rat hepatocyte cultures by liquid chromatography with laser induced fluorescence detection. Biomed Chromatogr. 1999;13:75–80.CrossRefPubMedGoogle Scholar
  36. Long EK, Murphy TC, Leiphon LJ, Watt J, Morrow JD, Milne GL, Howard JR, Picklo Sr MJ. Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation. J Neurochem. 2008;105:714–24.CrossRefPubMedGoogle Scholar
  37. Luo XP, Yazdanpanah M, Bhooi N, Lehotay DC. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography–mass spectrometry. Anal Biochem. 1995;228:294–8.CrossRefPubMedGoogle Scholar
  38. Michalski MC, Calzada C, Makino A, Michaud S, Guichardant M. Oxidation products of polyunsaturated fatty acids in infant formulas compared to human milk-a preliminary study. Mol Nutr Food Res. 2008;52:1478–85.CrossRefPubMedGoogle Scholar
  39. O’Brien-Coker IC, Perkins G, Mallet AI. Aldehyde analysis by high performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2001;15:920–8.CrossRefPubMedGoogle Scholar
  40. Orioli M, Aldini G, Beretta G, Facino RM, Carini M. LC-ESI-MS/MS determination of 4-hydroxy-trans-2-nonenal Michael adducts with cysteine and histidine-containing peptides as early markers of oxidative stress in excitable tissues. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;827:109–18.CrossRefPubMedGoogle Scholar
  41. Portier K, Guichardant M, Debouzy JC, Crouzier D, Geraud I, Kirschvink N, Lekeux P, Fellmann N, Coudert J. In vitro effects of oxygen on physico-chemical properties of horse erythrocyte membrane. Environ Toxicol Pharmacol. 2007;23:340–6.CrossRefPubMedGoogle Scholar
  42. Portier K, Crouzier D, Guichardant M, Prost M, Debouzy JC, Kirschvink N, Fellmann N, Lekeux P, Coudert J. Effects of high and low inspired fractions of oxygen on horse erythrocyte membrane properties, blood viscosity and muscle oxygenation during anaesthesia. Vet Anaesth Analg. 2009;36:287–98.CrossRefPubMedGoogle Scholar
  43. Pryor WA, Porter NA. Suggested mechanisms for the production of 4-hydroxy-2-nonenal from the autoxidation of polyunsaturated fatty acids. Free Radic Biol Med. 1990;8:541–3. Review.CrossRefPubMedGoogle Scholar
  44. Riahi Y, Cohen G, Shamni O, Sasson S. Signaling and cytotoxic functions of 4-hydroxyalkenals. Am J Physiol Endocrinol Metab. 2010a;299:E879–86.CrossRefPubMedGoogle Scholar
  45. Riahi Y, Sin-Malia Y, Cohen G, Alpert E, Gruzman A, Eckel J, Staels B, Guichardant M, Sasson S. The natural protective mechanism against hyperglycemia in vascular endothelial cells: roles of the lipid peroxidation product 4-hydroxydodecadienal and peroxisome proliferator-activated receptor delta. Diabetes. 2010b;59:808–18.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rosenfeld ME, Palinski W, Yla-Herttuala S, Butler S, Witztum JL. Oxidized low-density lipoprotein in experimental focal glomerulosclerosis. Arteriosclerosis. 1990;10:336–49.CrossRefPubMedGoogle Scholar
  47. Salomon RG, Kaur K, Podrez E, Hoff HF, Krushinsky AV, Sayre LM. HNE-derived 2-pentylpyrroles are generated during oxidation of LDL, are more prevalent in blood plasma from patients with renal disease or atherosclerosis, and are present in atherosclerotic plaques. Chem Res Toxicol. 2000;13:557–64.CrossRefPubMedGoogle Scholar
  48. Sayre LM, Arora PK, Iyer RS, Salomon RG. Pyrrole formation from 4-hydroxynonenal and primary amines. Chem Res Toxicol. 1993;6:19–22.CrossRefPubMedGoogle Scholar
  49. Siegel SJ, Bieschke J, Powers ET, Kelly JW. The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry. 2007;46:1503–10.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Siems WG, Hapner SJ, van Kuijk FJ. 4-hydroxynonenal inhibits Na(+)-K(+)-ATPase. Free Radic Biol Med. 1996;20:215–23.CrossRefPubMedGoogle Scholar
  51. Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaïdi-Tiali N, Lagarde M, Géloën A. Effects of oxidative stress on adiponectin secretion and lactate production in 3 T3-L1 adipocytes. Free Radic Biol Med. 2005;38:882–9.CrossRefPubMedGoogle Scholar
  52. Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med. 2013;62:157–69.CrossRefPubMedGoogle Scholar
  53. Szweda LI, Uchida K, Tsai L, Stadtman ER. Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem. 1993;268:3342–7.PubMedGoogle Scholar
  54. Tsuchiya Y, Okada G, Kobayashi S, Chikuma T, Hojo H. 4-hydroxy-2-nonenal-modified glyceraldehyde-3-phosphate dehydrogenase is degraded by cathepsin G in rat neutrophils. Oxid Med Cell Longev. 2011;2011:213686.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Uchida K. Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med. 2000;28:1685–96.CrossRefPubMedGoogle Scholar
  56. Uchida K, Stadtmant ER. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J Biol Chem. 1993;268:6388–93.PubMedGoogle Scholar
  57. Uchida K, Hasui Y, Osawa T. Covalent attachment of 4-hydroxy-2-nonenal to erythrocyte proteins. J Biochem. 1997;122:1246–51.CrossRefPubMedGoogle Scholar
  58. Vander Jagt DL, Hunsaker LA, Vander Jagt TJ, Gomez MS, Gonzales DM, Deck LM, Royer RE. Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem Pharmacol. 1997;53:1133–40.CrossRefPubMedGoogle Scholar
  59. Vankuijk FJGM, Siakotos AN, Fong LG, Stephens RJ, Thomas DW. Quantitative measurement of 4-hydroxyalkenals in oxidized low-density lipoprotein by gas chromatography–mass spectrometry. Anal Biochem. 1995;224:420–4.CrossRefGoogle Scholar
  60. Vella RE, Pillon NJ, Zarrouki B, Croze ML, Koppe L, Guichardant M, Pesenti S, Chauvin MA, Rieusset J, Géloën A, Soulage CO. Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation. Diabetes. 2015;64:1011–24.CrossRefPubMedGoogle Scholar
  61. Völkel W, Sicilia T, Pähler A, Gsell W, Tatschner T, Jellinger k, Leblhuber F, Riederer P, Lutz WK, Götz ME. Increased brain levels of 4-hydroxy-2-nonenal glutathione conjugates in severe Alzheimer’s disease. Neurochem Int. 2006;48:679–86.CrossRefPubMedGoogle Scholar
  62. Warnke MM, Wanigasekara E, Singhal SS, Singhal J, Awasthi S, Armstrong DW. The determination of glutathione-4-hydroxynonenal (GSHNE), E-4-hydroxynonenal (HNE), and E-1-hydroxynon-2-en-4-one (HNO) in mouse liver tissue by LC-ESI-MS. Anal Bioanal Chem. 2008;392:1325–33.CrossRefPubMedGoogle Scholar
  63. Wilkes JG, Conte ED, Kim Y, Holcomb M, Sutherland JB, Miller DW. Sample preparation for the analysis of flavors and off-flavors in foods. J Chromatogr A. 2000;880:3–33. Review.CrossRefPubMedGoogle Scholar
  64. Williams TI, Lovell MA, Lynn BC. Analysis of derivatized biogenic aldehydes by LC tandem mass spectrometry. Anal Chem. 2005;77:3383–9.CrossRefPubMedGoogle Scholar
  65. Winter CK, Segall HJ, Haddon WF. Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro. Cancer Res. 1986;46:5682–6.PubMedGoogle Scholar
  66. Zarrouki B, Soares AF, Guichardant M, Lagarde M, Géloën A. The lipid peroxidation end-product 4-HNE induces COX-2 expression through p38MAPK activation in 3 T3-L1 adipose cell. FEBS Lett. 2007;581:2394–400.CrossRefPubMedGoogle Scholar
  67. Zheng R, Dragomir AC, Mishin V, Richardson JR, Heck DE, Laskin DL, Laskin JD. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats. Toxicol Appl Pharmacol. 2014;279:43–52.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2016

Authors and Affiliations

  • Michel Guichardant
    • 1
  • Nathalie Bernoud Hubac
    • 1
  • Baptiste Fourmaux
    • 1
  • Madeleine Picq
    • 1
  • Patrick Molière
    • 1
  • Michel Lagarde
    • 1
  1. 1.Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, Université de LyonVilleurbanne, LyonFrance