Encyclopedia of Lipidomics

Living Edition
| Editors: Markus R. Wenk

Preparative Thin Layer Chromatography of (Phospho) Lipids

  • Jenny Schröter
  • Rosmarie Süß
  • Jürgen Schiller
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-7864-1_64-1

Synonyms

Introduction

Thin-layer chromatography (TLC) and its refined version high-performance thin-layer chromatography (HPTLC) are indispensable tools of modern analytical chemistry (Hahn-Deinstrop 2006). Besides its traditional applications in natural product chemistry analysis and isolation, TLC is also widely used in the field of lipids (Touchstone 1995), phospholipids (Fuchs et al. 2011), and particularly glycolipids (Müthing 1996). All these fields have been comprehensively reviewed and, thus, not so many details will be provided here due to the limited space.

Nevertheless, in an era where HPLC is more widely used, it is necessary to emphasize the advantages of TLC – in addition to the fact that TLC is quite a simple and inexpensive method which can be rather easily established in basically all kinds of laboratories. The following TLC advantages are sorted according to their importance (Fuchs et al. 2009):
  1. 1.

    TLC uses always a completely new stationary...

Keywords

Lipid Class Lyme Disease Steryl Ester Separation Quality Fatty Acyl Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Balogh B. Preparative analog to thin layer chromatography. Anal Chem. 1964;36:2498–9.CrossRefGoogle Scholar
  2. Bergheim S, Malterud KE, Anthonsen T. Preparative scale separation of neutral lipids and phospholipids by centrifugally accelerated thin-layer chromatography. J Lipid Res. 1991;32:877–9.PubMedGoogle Scholar
  3. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;3:911–7.CrossRefGoogle Scholar
  4. Bobbitt JM, Kirchner JG. Thin layer chromatography. Literary Licensing, LLC; Whitefish 2013; ISBN-10: 1258806150; ISBN-13: 978-1258806156Google Scholar
  5. De Leo V, Catucci L, Ventrella A, Milano F, Agostiano A, Corcelli A. Cardiolipin increases in chromatophores isolated from Rhodobacter sphaeroides after osmotic stress: structural and functional roles. J Lipid Res. 2009;50:256–64.CrossRefPubMedGoogle Scholar
  6. DeLong CJ, Baker PR, Samuel M, Cui Z, Thomas MJ. Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography. J Lipid Res. 2001;42:1959–68.PubMedGoogle Scholar
  7. Dutta PC, Appelqvist LA. Sterols and sterol oxides in the potato products, and sterols in the vegetable oils used for industrial frying operations. Grasas Aceites. 1996;47:38–47.CrossRefGoogle Scholar
  8. Dutta PC, Appelqvist LA. Studies on phytosterol oxides. 1. Effect of storage on the content in potato chips prepared in different vegetable oils. J Am Oil Chem Soc. 1997;74:647–57.CrossRefGoogle Scholar
  9. Eibisch M, Zellmer S, Gebhardt R, Süss R, Fuchs B, Schiller J. Phosphatidylcholine dimers can be easily misinterpreted as cardiolipins in complex lipid mixtures: a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric study of lipids from hepatocytes. Rapid Commun Mass Spectrom. 2011a;25:2619–26.CrossRefPubMedGoogle Scholar
  10. Eibisch M, Fuchs B, Schiller J, Süß R, Teuber K. Analysis of phospholipid mixtures from biological tissues by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS): a laboratory experiment. J Chem Educ. 2011b;88:503–7.CrossRefGoogle Scholar
  11. Fischer W, Leopold K. Polar lipids of four Listeria species containing L-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Bacteriol. 1999;49:653–62.CrossRefPubMedGoogle Scholar
  12. Fuchs B, Schiller J, Süss R, Schürenberg M, Suckau D. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem. 2007;389:827–34.CrossRefPubMedGoogle Scholar
  13. Fuchs B, Süß R, Nimptsch A, Schiller J. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) directly combined with thin-layer chromatography (TLC) – a review of the current state. Chromatographia. 2009;69:95–105.CrossRefGoogle Scholar
  14. Fuchs B, Süß R, Teuber K, Eibisch M, Schiller J. Lipid analysis by thin-layer chromatography – a review of the current state. J Chromatogr A. 2011;1218:2754–74.CrossRefPubMedGoogle Scholar
  15. Geisel RE, Sakamoto K, Russell DG, Rhoades ER. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin is due principally to trehalose mycolates. J Immunol. 2005;174:5007–15.CrossRefPubMedGoogle Scholar
  16. Hahn-Deinstrop E. Applied thin-layer chromatography – best practice and avoidance of mistakes. 2nd ed. Weinheim: Wiley-VCH; 2006.CrossRefGoogle Scholar
  17. Hashimoto M, Kirikae F, Dohi T, Adachi S, Kusumoto S, Suda Y, Fujita T, Naoki H, Kirikae T. Structural study on lipid A and the O-specific polysaccharide of the lipopolysaccharide from a clinical isolate of Bacteroides vulgatus from a patient with Crohn’s disease. Eur J Biochem. 2002;269:3715–21.CrossRefPubMedGoogle Scholar
  18. Hostettmann K, Marston A, Hostettmann M. Preparative chromatography techniques applications in natural product isolation. 2nd ed. Berlin, Heidelberg: Springer; 1998.Google Scholar
  19. Ilinov PP, Deleva DD, Dimov SI, Zaprianova ET. A variant for isolation of serum gangliosides. J Liq Chromatogr Relat Technol. 1997;20:1149–57.CrossRefGoogle Scholar
  20. Iriko H, Nakamura K, Kojima H, Iida-Tanaka N, Kasama T, Kawakami Y, Ishizuka I, Uchida A, Murata Y, Tamai Y. Chemical structures and immunolocalization of glycosphingolipids isolated from Diphyllobothrium hottai adult worms and plerocercoids. Eur J Biochem. 2002;269:3549–59.CrossRefPubMedGoogle Scholar
  21. Jover E, Domínguez C, Erra P, Bayona JM. Comparative characterization of a wool-wax extract by two complementary chromatographic techniques. J Cosmet Sci. 2006;57:23–35.PubMedGoogle Scholar
  22. Kowalska T, Sherma J. Preparative layer chromatography. 1st ed. Boca Raton: CRC Taylor and Francis; 2006.CrossRefGoogle Scholar
  23. Leray C, Pelletier X, Hemmendinger S, Cazenave JP. Thin-layer chromatography of human platelet phospholipids with fatty acid analysis. J Chromatogr. 1987;420:411–6.CrossRefPubMedGoogle Scholar
  24. Lessig J, Gey C, Süss R, Schiller J, Glander HJ, Arnhold J. Analysis of the lipid composition of human and boar spermatozoa by MALDI-TOF mass spectrometry, thin layer chromatography and 31P NMR spectroscopy. Comp Biochem Physiol B Biochem Mol Biol. 2004;137:265–77.CrossRefPubMedGoogle Scholar
  25. Liu QT, Kinderlerer JL. Preparative thin-layer chromatographic separation and subsequent gas chromatographic-mass spectrometric analysis of monoacylglycerols derived from butter oil by fungal degradation. J Chromatogr A. 1999;855:617–6124.Google Scholar
  26. Miwa H, Yamamoto M, Futata T, Kan K, Asano T. Thin-layer chromatography and high-performance liquid chromatography for the assay of fatty acid compositions of individual phospholipids in platelets from non-insulin-dependent diabetes mellitus patients: effect of eicosapentaenoic acid ethyl ester administration. J Chromatogr B. 1996;677:217–23.CrossRefGoogle Scholar
  27. Montealegre C, Verardo V, Gómez-Caravaca AM, García-Ruiz C, Marina ML, Caboni MF. Molecular characterization of phospholipids by high-performance liquid chromatography combined with an evaporative light scattering detector, high-performance liquid chromatography combined with mass spectrometry, and gas chromatography combined with a flame ionization detector in different oat varieties. J Agric Food Chem. 2012;60:10963–9.CrossRefPubMedGoogle Scholar
  28. Müthing J. High-resolution thin-layer chromatography of gangliosides. J Chromatogr A. 1996;720:3–25.CrossRefPubMedGoogle Scholar
  29. Nasopoulou C, Gogaki V, Panagopoulou E, Demopoulos C, Zabetakis I. Hen egg yolk lipid fractions with antiatherogenic properties. Anim Sci J. 2013;84:264–71.CrossRefPubMedGoogle Scholar
  30. Olsson NU. Advances in planar chromatography for the separation of food lipids. J Chromatogr. 1992;624:11–9.CrossRefPubMedGoogle Scholar
  31. Pannkuk EL, Risch TS, Savary BJ. Profiling the triacylglyceride contents in bat integumentary lipids by preparative thin layer chromatography and MALDI-TOF mass spectrometry. J Vis Exp. 2013;79.Google Scholar
  32. Parcerisa J, Codony R, Boatella J, Rafecas M. Triacylglycerol and phospholipid composition of hazelnut (Corylus avellana L.) lipid fraction during fruit development. J Agric Food Chem. 1999;47:1410–5.CrossRefPubMedGoogle Scholar
  33. Piretti MV, Pagliuca G. Systematic isolation and identification of membrane lipid oxidation products. Free Radic Biol Med. 1989;7:219–21.CrossRefPubMedGoogle Scholar
  34. Rhee KS, Del Rosario RR, Dugan LR. Determination of plasmalogens after treating with a 2,4-dinitrophenylhydrazine-phosphoric acid reagent. Lipids. 1967;2:334–8.CrossRefPubMedGoogle Scholar
  35. Santiago M, Strobel S. Thin layer chromatography. Methods Enzymol. 2013;533:303–24.CrossRefPubMedGoogle Scholar
  36. Schiller J, Süß R, Petković M, Hanke G, Vogel A, Arnold K. Effects of thermal stressing on saturated vegetable oils and isolated triacylglycerols – product analysis by MALDI-TOF mass spectrometry, NMR and IR spectroscopy. Eur J Lipid Sci Technol. 2002;104:496–505.CrossRefGoogle Scholar
  37. Schiller J, Müller K, Süss R, Arnhold J, Gey C, Herrmann A, Lessig J, Arnold K, Müller P. Analysis of the lipid composition of bull spermatozoa by MALDI-TOF mass spectrometry – a cautionary note. Chem Phys Lipids. 2003;126:85–94.CrossRefPubMedGoogle Scholar
  38. Stahl E. Dünnschicht-Chromatographie – Ein Laboratoriums-Handbuch. Berlin: Springer; 1967.Google Scholar
  39. Summers RM, Mefferd Jr RB. A rapid preparative thin-layer chromatographic technique for serum lipids. J Chromatogr. 1968;32:587–90.CrossRefPubMedGoogle Scholar
  40. Teuber K, Riemer T, Schiller J. Thin-layer chromatography combined with MALDI-TOF-MS and 31P-NMR to study possible selective bindings of phospholipids to silica gel. Anal Bioanal Chem. 2010;398:2833–42.CrossRefPubMedGoogle Scholar
  41. Touchstone JC. Thin-layer chromatographic procedures for lipid separation. J Chromatogr B. 1995;671:169–95.CrossRefGoogle Scholar
  42. Valls JE, Bello RA, Kodaira MS. Semiquantitative analysis by thin-layer chromatography (TLC) of biogenic amines in dried, salted and canned fish products. J Food Qual. 2002;25:165–76.CrossRefGoogle Scholar
  43. Ventrella A, Catucci L, Mascolo G, Corcelli A, Agostiano A. Isolation and characterization of lipids strictly associated to PSII complexes: focus on cardiolipin structural and functional role. Biochim Biophys Acta. 2007;1768:1620–7.CrossRefPubMedGoogle Scholar
  44. Wang Y, Krull IS, Liu C, Orr JD. Derivatization of phospholipids. J Chromatogr B. 2003;793:3–14.CrossRefGoogle Scholar
  45. Wheeler CM, Garcia Monco JC, Benach JL, Golightly MG, Habicht GS, Steere AC. Nonprotein antigens of Borrelia burgdorferi. J Infect Dis. 1993;167:665–74.CrossRefPubMedGoogle Scholar
  46. White T, Bursten S, Federighi D, Lewis RA, Nudelman E. High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem. 1998;258:109–17.CrossRefPubMedGoogle Scholar
  47. Wilson R, Sargent JR. Chain separation of monounsaturated fatty acid methyl esters by argentation thin-layer chromatography. J Chromatogr A. 2001;905:251–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jenny Schröter
    • 1
  • Rosmarie Süß
    • 1
  • Jürgen Schiller
    • 1
  1. 1.Medical Department, Institute of Medical Physics & BiophysicsUniversity of LeipzigLeipzigGermany