Skip to main content

Flow Cytometry as Platform for Biomarker Discovery and Clinical Validation

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Flow cytometry (FC) is a highly versatile method that is constantly expanding. Its field of application is extremely wide (oncology, hematology, transplantation, autoimmunity, tumor immunology, chemotherapy, etc.), making it highly useful not only in the discovery of new biomarkers but also in clinical validation and routine implementation. FC simultaneously provides information about the phenotypic and functional characteristics of cells and enables quantification of large numbers of cells and assessment of their subset distribution, activation status, cytokine production profile, and other cellular functions. Furthermore, because FC allows the performance of many different types of assays (immunophenotyping, intracellular staining, cell cycle, cell proliferation, apoptosis, phosphoflow assays, etc.), it yields different types of information, ranging from elucidation of mechanisms of action (for drugs and disease progression) to functional assays. This technique plays an important role in the prioritization, verification, and clinical validation of new biomarkers. However, because of the high complexity of the panels of reagents involved, greater expertise is needed for correct interpretation of the data obtained, and the technique continues to have several limitations. One of the most important limitations is the lack of standardization in assay and instrument setup, as well as the absence of good quality controls, especially external controls. There is a need to develop mathematical algorithms able to predict clinical evolution/disease progression based on FC measurement of biomarkers. New biostatistics models should be developed to establish the most appropriate correlation among biomarkers, drug effect, and clinical outcome, which would allow personalized treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Acute Rejection

BrDU:

Bromodeoxyuridine

C&T:

Cytometric Setup and Tracking

cGVHD:

Chronic Graft-Versus-Host Disease

CSC:

Cancer Stem Cell

DNA:

Deoxyribonucleic Acid

EDTA:

Ethylenediaminetetraacetic Acid

FC:

Flow Cytometry

ICS:

Intracellular Staining

IFN-γ:

Interferon-γ

IL:

Interleukin

PBMC:

Peripheral Blood Mononuclear Cells

S6RP:

S6 Ribosomal Protein

SLE:

Systemic Lupus Erythematosus

SOPs:

Standard Operating Procedures

TCR:

T-Cell Receptor

Treg:

Regulatory T Cells

References

  • Akoglu B, Kriener S, Martens S, et al. Faust, Interleukin-2 in CD8+ T cells correlates with Banff score during organ rejection in liver transplant recipients. Clin Exp Med. 2009;9(4):259–62.

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Barrientos A, Arroyo J, Canton R, et al. Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev. 2000;13:167–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandura DR, Baranov VI, Ornatsky OI, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009;81(16):6813–22.

    Article  CAS  PubMed  Google Scholar 

  • Benítez F, Najafian N. Novel noninvasive assays to predict transplantation rejection and tolerance: enumeration of cytokine-producing alloreactive T cells. Clin Lab Med. 2008;28:365–73.

    Article  PubMed  Google Scholar 

  • Bestard O, Nickel P, Cruzado JM, et al. Circulating alloreactive T cells correlate with graft function in longstanding renal transplant recipients. J Am Soc Nephrol. 2008;19(7):1419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boleslawski E, Conti F, Sanquer S, et al. Defective inhibition of peripheral CD8+ T cell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. Transplantation. 2004;77:1815–20.

    Article  CAS  PubMed  Google Scholar 

  • Brown M, Wittwer C. Flow cytometry: principles and clinical applications in hematology. Clin Chem. 2000;46:1221–9.

    CAS  PubMed  Google Scholar 

  • Burkhard G, Reinhard K, Spaniol K, et al. Flow cytometry in cancer stem cell analysis and separation. Cytometry A. 2012;81A(4):284–93.

    Article  Google Scholar 

  • Carey JL, McCoy JP, Keren DF. Chapter 14. Flow cytometry in clinical diagnosis. 4th ed. Weikersheimer J; 2007, American Society for Clinical Pathology Press (ASCP), Chicago IL, p. 275–294.

    Google Scholar 

  • Comin-Anduix B, Sazegar H, Chodon T, et al. Modulation of cell signaling networks after CTLA4 blockade in patients with metastatic melanoma. PLoS One. 2010;5(9):2711.

    Article  Google Scholar 

  • De Luca A, Rindi L, Celi A, et al. Intracellular detection of interleukin 17 and other cytokines in human bronchoalveolar lavage fluid: a first assessment. Immunol Lett. 2012;141(2):204–9.

    Article  PubMed  Google Scholar 

  • Dieterlen MT, Bittner HB, Klein S, et al. Assay validation of phosphorylated S6 ribosomal protein for a pharmacodynamic monitoring of mTOR-inhibitors in peripheral human blood. Cytometry B Clin Cytom. 2012;82(3):151–7.

    Article  PubMed  Google Scholar 

  • Drevs J, Medinger M, Schmidt-Gersbach C, et al. Receptor tyrosine kinases: the main targets for new anticancer therapy. Curr Drug Targets. 2003;4(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  • Givan AL. Flow cytometry: first principles. 2nd ed. New York: Wiley; 1992.

    Google Scholar 

  • Hengel RL, Nicholson JKA. An update on the use of flow cytometry in HIV infection and AIDS. Clin Lab Med. 2001;21:841–56.

    CAS  PubMed  Google Scholar 

  • Herzenberg LA, Tung J, Moore WA, et al. Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol. 2006;7(7):681–5.

    Article  CAS  PubMed  Google Scholar 

  • Horsburgh T, Martin S, Robson AJ. The application of flow cytometry to histocompatibility testing. Transpl Immunol. 2000;8:3–15.

    Article  CAS  PubMed  Google Scholar 

  • Kalina T, Flores-Montero J, van der Velden VH, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Oh EJ, Kim MJ, et al. Pretransplant donor-specific interferon-gamma ELISPOT assay predicts acute rejection episodes in renal transplant recipients. Transplant Proc. 2007;39(10):3057–60.

    Article  CAS  PubMed  Google Scholar 

  • Kirmizis D, Chatzidimitriou D, Chatzopoulou F, et al. Applications of flow cytometry in solid organ allogeneic transplantation. In: Schmid I, editor. Clinical flow cytometry – emerging 2012 applications. InTech. 2012, ISBN: 978-953-51-0575-6, Croatia, Available from: http://www.intechopen.com/books/clinical-flow-cytometry-emerging-applications/applications-of-flow-cytometryin-solid-organ-allogeneic-transplantation

  • Kumar P, Satchidanandam V. Ethyleneglycol-bis-(beta-aminoethylether) tetraacetate as a blood anticoagulant: preservation of antigen-presenting cell function and antigen-specific proliferative response of peripheral blood mononuclear cells from stored blood. Clin Diagn Lab Immunol. 2000;7(4):578–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmina Z, Krenn K, Petkov V, et al. CD19 (+) CD21 (low) B cells and patients at risk for NIH-defined chronic graft-versus-host disease with bronchiolitis obliterans syndrome. Blood. 2013;121(10):1886–95.

    Article  CAS  PubMed  Google Scholar 

  • Lepin EJ, Zhang Q, Zhang X, et al. Phosphorylated S6 ribosomal protein: a novel biomarker of antibody-mediated rejection in heart allografts. Am J Transplant. 2006;6(7):1560–71.

    Article  CAS  PubMed  Google Scholar 

  • Maecker HT, Rinfret A, D’Souza P, et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 2005;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maecker HT, McCoy JP, FOCIS Human Immunophenotyping Consortium, et al. A model for harmonizing flow cytometry in clinical trials. Nat Immunol. 2010;11(11):975–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol. 2012;12(3):191–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Llordella M, Puig-Pey I, Orlando G, et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant. 2007;7(2):309–19.

    Article  PubMed  Google Scholar 

  • McKinnon LR, Nyanga B, Chege D, et al. Characterization of a human cervical CD4+ T cell subset coexpressing multiple markers of HIV susceptibility. J Immunol. 2011;187(11):6032–42.

    Article  CAS  PubMed  Google Scholar 

  • Millán O, Benítez C, Guillén D, et al. Biomarkers of immunoregulatory status in stable liver transplant recipients undergoing weaning of immunosuppressive therapy. Clin Immunol. 2010;137(3):337–46.

    Article  PubMed  Google Scholar 

  • Millán O, Rafael-Valdivia L, Torrademe E, et al. Intracellular IFN-gamma and Il-2 expression monitoring as surrogate markers of the risk of acute rejection and personal drug response in de novo liver transplant recipients. Cytokine. 2013;61(2):556–64.

    Article  PubMed  Google Scholar 

  • Nickel P, Presber F, Bold G, Biti D, et al. Enzyme-linked immunosorbent spot assay for donor-reactive interferon-gamma-producing cells indentifies T-cell presensitization and correlates with graft function al 6 and 12 months in renal-transplant recipients. Transplantation. 2004;78(11):1640–6.

    Article  CAS  PubMed  Google Scholar 

  • Nomura LE, Emu B, Hoh R, et al. IL-2 production correlates with effector cell differentiation in HIV-specific CD8+ T cells. AIDS Res Ther. 2006;3:18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunez R. DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol. 2001;3(3):67–70.

    CAS  PubMed  Google Scholar 

  • Ornatsky O, Bandura D, Baranov V, et al. Highly multiparametric analysis by mass cytometry. J Immunol Methods. 2010;361(1–2):1–20.

    Article  CAS  PubMed  Google Scholar 

  • Pallier A, Hillion S, Danger R, et al. Patients with drug-free long-term graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype. Kidney Int. 2010;78(5):503–13.

    Article  CAS  PubMed  Google Scholar 

  • Relja B, Meder F, Wilhelm K, et al. Simvastatin inhibits cell growth and induces apoptosis and G0/G1 cell cycle arrest in hepatic cancer cells. Int J Mol Med. 2010;26(5):735–41.

    Article  CAS  PubMed  Google Scholar 

  • San Segundo D, Fernández-Fresnedo G, Ruiz JC, et al. Two-year follow-up of a prospective study of circulating regulatory T cells in renal transplant patients. Clin Transplant. 2010;24(3):386–93.

    Article  PubMed  Google Scholar 

  • Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211–25.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro HM. Practical flow cytometry. 4th ed. New York: Wiley; 2003.

    Book  Google Scholar 

  • Subasic D, Karamehic J, Delic-Sarac M, et al. Monitoring of disease biomarkers activity and immunophenotyping as important factors in SLE clinical management. Med Arh. 2012;66(5):336–9.

    Article  Google Scholar 

  • Tuaillon E, Al Tabaa Y, Baillat V, et al. Close association of CD8+/CD38 bright with HIV-1 replication and complex relationship with CD4+ T-cell count. Cytometry B Clin Cytom. 2009;76(4):249–60.

    Article  PubMed  Google Scholar 

  • Van Roon JA, Hartgring SA, Wenting-van Wijk M, et al. Persistence of interleukin 7 activity and levels on tumour necrosis factor alpha blockade in patients with rheumatoid arthritis. Ann Rheum Dis. 2007;66(5):664–9.

    Article  PubMed  Google Scholar 

  • Walter GJ, Evans HG, Menon B, et al. Interaction with activated monocytes enhances cytokine expression and suppressive activity of human CD4 + CD45ro + CD25 + CD127 (low) regulatory T cells. Arthritis Rheum. 2013;65(3):627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White CA, Weaver RL, Grillo-López AJ. Antibody-targeted immunotherapy for treatment of malignancy. Ann Rev Med. 2001;52:125–45.

    Article  CAS  PubMed  Google Scholar 

  • Wu DY, Patti-Diaz L, Hill CG. Development and validation of flow cytometry methods for pharmacodynamic clinical biomarkers. Bioanalysis. 2010;2(9):1617–26.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Jin J, Wang H, et al. The regulatory/cytotoxic infiltrating T cells in early renal surveillance biopsies predicts acute rejection and survival. Neprol Dial TX. 2012;27:2958–65.

    Article  CAS  Google Scholar 

  • Younes SA, Yassine-Diab B, Dumont AR, et al. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity. J Exp Med. 2003;198(12):1909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercè Brunet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Millán, O., Brunet, M. (2015). Flow Cytometry as Platform for Biomarker Discovery and Clinical Validation. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_16

Download citation

Publish with us

Policies and ethics