Magnetic Nanoparticles and Granular Thin Films

Living reference work entry

Abstract

Generally speaking, nanostructured materials are those with at least one dimension falling in the nanometer scale, such as nanoparticles (including quantum dots), nanorods, nanowires, thin films, and bulk materials made of nanoscale building blocks or consist of nanoscale structures. The properties of nanostructured materials are so different from those of the bulk counterparts, especially in terms of magnetism. In this part, we will introduce you some representative magnetic nanoparticles and granular thin films that are important in spintronics.

Keywords

Ferromagnetic Metal Granular Film Vinyl Ester Resin CrO2 Particle Double Perovskite Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

GMR

Giant magnetoresistance

LFMR

Low-field MR

MR

Magnetoresistance

MWNT

Multiwalled carbon nanotube

OSCs

Organic semiconductors

TMR

Tunneling magnetoresistance

TVA

Thermionic vacuum arc

References

  1. 1.
    Zhanhu G, Thomas Hahn H (2008) Magnetic and magnetoresistance behaviors of particulate iron/vinyl ester resin nanocomposites. J Appl Phys 104:014314CrossRefADSGoogle Scholar
  2. 2.
    Wu SY (2005) Tunneling magnetoresistance in Ag/Co nanoparticle composites. J Magn Magn Mater 294:e83–e86CrossRefADSGoogle Scholar
  3. 3.
    Zha X (2006) Enhanced magnetoresistance and surface state of CrO2 particles improved by chemical process. J Magn Magn Mater 307:134–138CrossRefADSGoogle Scholar
  4. 4.
    Li XW (1997) Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films. Appl Phys Lett 71:1124CrossRefADSGoogle Scholar
  5. 5.
    Li XW, Gupta A, Xiao G (1999) Influence of strain on the magnetic properties of epitaxial (100) chromium dioxide (CrO2) films. Appl Phys Lett 75:713CrossRefADSGoogle Scholar
  6. 6.
    Coey JMD, Berkowitz AE (1998) Magnetoresistance of chromium dioxide powder compacts. Phys Rev Lett 80:3815CrossRefADSGoogle Scholar
  7. 7.
    Hwang HY (1997) Enhanced intergrain tunneling magnetoresistance in half-metallic CrO2 films. Science 278:1607–1609CrossRefADSGoogle Scholar
  8. 8.
    Gridin VV (1996) Magnetoresistance extremum at the first-order Verwey transition in magnetite (Fe3O4). Phys Rev B 53:15518–15521CrossRefADSGoogle Scholar
  9. 9.
    Peng DL (2002) Magnetic properties and magnetoresistance in small iron oxide cluster assemblies. Appl Phys Lett 81:4598CrossRefADSGoogle Scholar
  10. 10.
    Wang WD, Yu MH, Batzill M, He JB, Diebold U, Tang JK (2006) Enhanced tunneling magnetoresistance and high-spin polarization at room temperature in a polystyrene-coated Fe3O4 granular system. Phys Rev B 73:134412CrossRefADSGoogle Scholar
  11. 11.
    Hwang HY, Cheong S-W (1997) Low-field magnetoresistance in the pyrochlore Tl2Mn2O7. Nature 389:942CrossRefADSGoogle Scholar
  12. 12.
    Helmholt V (1993) Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys Rev Lett 71:2331–2333CrossRefADSGoogle Scholar
  13. 13.
    Chahara K (1993) Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl Phys Lett 63:1990–1992CrossRefADSGoogle Scholar
  14. 14.
    Shimakawa Y (1996) Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure. Nature 379:53–55CrossRefADSGoogle Scholar
  15. 15.
    Cheong S-W (1996) Giant magnetoresistance in pyrochlore Tl2-xInxMn2O7. Solid State Commun 98:163–166CrossRefADSGoogle Scholar
  16. 16.
    Zhong W, Liu W, Au CT, Du YW (2006) Tunnelling magnetoresistance of double perovskite Sr2FeMoO6 enhanced by grain boundary adjustment. Nanotechnology 17:250–256CrossRefADSGoogle Scholar
  17. 17.
    Kobayashi K-I, Kimura T (1998) Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395:677CrossRefADSGoogle Scholar
  18. 18.
    Tomioka Y, Okuda T (2000) Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Phys Rev B 61:422CrossRefADSGoogle Scholar
  19. 19.
    Sharma A, Berenov A (2003) Enhanced intergrain magnetoresistance in bulk Sr2FeMoO6 through controlled processing. Appl Phys Lett 83:2384CrossRefADSGoogle Scholar
  20. 20.
    Sarma DD, Mahadevan P (2000) Electronic structure of Sr2FeMoO6. Phys Rev Lett 85:2549CrossRefADSGoogle Scholar
  21. 21.
    Yanagihara H, Cheong W, (2002) Critical behavior of single-crystal double perovskite Sr2FeMoO6. Phys Rev B 65:092411CrossRefADSGoogle Scholar
  22. 22.
    Popov G, Greenblatt M, Croft M (2003) Large effects of A-site average cation size on the properties of the double perovskites Ba2-xSrxMnReO6: a d5-d1 system. Phys Rev B 67:024406; Phillips K, Chattopadhyay A (2003) Dynamical mean-field theory of double perovskite ferrimagnets. Phys Rev B 67:125119Google Scholar
  23. 23.
    Rubi D, Frontera C, Fontcuberta J (2004) Ferromagnetic coupling in NdxCa2 − xFeMoO6 double perovskites: dominant band-filling effects. Phys Rev B 70:094405CrossRefADSGoogle Scholar
  24. 24.
    Ritter C, Ibarra MR (2000) Structural and magnetic properties of double perovskites AA’FeMoO6 (AA’ = Ba2, BaSr, Sr2 and Ca2). J Phys Condens Matter 12:8295CrossRefADSGoogle Scholar
  25. 25.
    Alonso JA, Casais MT, Martinez-LopeM J, Martinez JL, Velasco P, Munoz A, Fernandez-DiazM T (2000) Preparation, crystal structure, and magnetic and magnetotransport properties of the double perovskite Ca2FeMoO6. Chem Mater 12:161CrossRefGoogle Scholar
  26. 26.
    Navarro J, Frontera C (2001) Raising the curie temperature in Sr2FeMoO6 double perovskites by electron doping. Phys Rev B 64:092411CrossRefADSGoogle Scholar
  27. 27.
    Frontera C, Rubi D, Navarro J (2003) Effect of band filling and structural distortions on the Curie temperature of Fe-Mo double perovskites. Phys Rev B 68:012412CrossRefADSGoogle Scholar
  28. 28.
    Zhang N, Ding W, Zhong W (1997) Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3. Phys Rev B 56(13):8138CrossRefADSGoogle Scholar
  29. 29.
    Stauffer K (1985) Introduction to percolation theory. Taylor and Francis, LondonGoogle Scholar
  30. 30.
    Zhang X, Chen Y, Li Z (2006) Enhanced magnetoresistance and surface state of CrO2 particles improved by chemical process. J Magn Magn Mater 307:134–138CrossRefADSGoogle Scholar
  31. 31.
    Dai J, Tang H, Xu L (2000) Characterization of the natural barriers of intergranular tunnel junctions: Cr2O3 surface layers on CrO2 nanoparticles. Appl Phys Lett 77:2840CrossRefADSGoogle Scholar
  32. 32.
    Groot RA, Mueller FM (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024–2027CrossRefADSGoogle Scholar
  33. 33.
    Morrish AH (1965) Physical principles of magnetism. Wiley, New YorkGoogle Scholar
  34. 34.
    Meservey R, Tedrow PM (1994) Spin-polarized electron tunneling. Phys Rep 238(4):173–243CrossRefADSGoogle Scholar
  35. 35.
    Park J-H, Vescovo E (1998) Direct evidence for a half-metallic ferromagnet. Nature 392(6678):794–796CrossRefADSGoogle Scholar
  36. 36.
    Zhang Z, Satpathy S (1991) Electron states, magnetism, and the Verwey transition in magnetite. Phys Rev B 44:13319CrossRefADSGoogle Scholar
  37. 37.
    Wang JF, Shi J (2007) Fabrication and enhanced magnetoresistance of SiO-coated FeO nanosphere compact. Appl Phys Lett 90:213106CrossRefADSGoogle Scholar
  38. 38.
    Yue FJ, Wang S, Lin L (2011) Large low-field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature. J Phys D Appl Phys 44:025001 (5 pp)CrossRefADSGoogle Scholar
  39. 39.
    Zhang YP, Xing H, Poudyal N, Nandwana V, Rong C-b, Yan S-s, Zeng H, Liu JP (2010) Inversed tunneling magnetoresistance in hybrid FePt/FeO core/shell nanoparticles systems. J Appl Phys 108:103905CrossRefADSGoogle Scholar
  40. 40.
    Tan RP, Carrey J (2008) Voltage and temperature dependence of high-field magnetoresistance in arrays of magnetic nanoparticles. J Appl Phys 104:023908CrossRefADSGoogle Scholar
  41. 41.
    Graham DL, Ferreira HA (2004) Magnetoresistive-based biosensors and biochips. Trends Biotechnol 22:455CrossRefGoogle Scholar
  42. 42.
    Chen P, Xing DY (2001) Giant room-temperature magnetoresistance in polycrystalline Zn{0.41} Fe{2.59} O{4} with α-Fe{2} O{3} grain boundaries. Phys Rev Lett 87(10):107202CrossRefADSGoogle Scholar
  43. 43.
    Baibich MN (1988) Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Phys Rev Lett 61:2472CrossRefADSGoogle Scholar
  44. 44.
    Binasch G, Grunberg P, Saurenbach F (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828CrossRefADSGoogle Scholar
  45. 45.
    Krebs JJ, Lubitz P (1989) Magnetic resonance determination of the antiferromagnetic coupling of Fe layers through Cr. Phys Rev Lett 63:1645CrossRefADSGoogle Scholar
  46. 46.
    Parkin SSP, More N (1990) Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett 64:2304CrossRefADSGoogle Scholar
  47. 47.
    Berkowitz AE (1992) Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett 68:3745CrossRefADSGoogle Scholar
  48. 48.
    Xiao JQ, Jiang JS (1992) Giant magnetoresistance in nonmultilayer magnetic systems. Phys Rev Lett 68:3749CrossRefADSGoogle Scholar
  49. 49.
    Fujimori H (1995) Enhanced magnetoresistance in insulating granular systems: evidence for higher-order tunneling. Mater Sci Eng B 31:219; Mitani S (1998) Enhanced magnetoresistance in insulating granular systems: evidence for higher-order tunneling J Appl Phys 83:6524Google Scholar
  50. 50.
    Barzilai S et al (1981) Magnetic and transport properties of granular cobalt films. Phys Rev B 23:1809CrossRefADSGoogle Scholar
  51. 51.
    Furubayashi T, Nakatani I (1996) Giant magnetoresistance in granular Fe–MgF2 films. J Appl Phys 79:6258CrossRefADSGoogle Scholar
  52. 52.
    Honda S et al (1997) Tunneling giant magnetoresistance in Fe-SiO2 multilayered and alloyed films. J Magn Magn Mater 165:153CrossRefADSGoogle Scholar
  53. 53.
    Ono K et al (1997) Enhanced magnetic valve effect and magneto-Coulomb oscillations in ferromagnetic single electron transistor. J Phys Soc Jpn 66:1261CrossRefADSGoogle Scholar
  54. 54.
    Schelp LF et al (1997) Spin-dependent tunneling with Coulomb blockade. Phys Rev B 56:R5747CrossRefADSGoogle Scholar
  55. 55.
    Inomata K et al (1997) Spin-dependent tunneling between a soft ferromagnetic layer and hard magnetic nano particles. Jpn J Appl Phys 36:1380CrossRefADSGoogle Scholar
  56. 56.
    Gittleman JI, Goldstein Y, Bozowski S (1972) Magnetic properties of granular nickel films. Phys Rev B 5(9):3609–3621CrossRefADSGoogle Scholar
  57. 57.
    Inoue J, Maekawa S (1996) Theory of tunneling magnetoresistance in granular magnetic films. Phys Rev B 53(18):R11927–R11929CrossRefADSGoogle Scholar
  58. 58.
    Milner A, Gerber A, Groisman B et al (1996) Spin-dependent electronic transport in granular ferromagnets. Phys Rev Lett 76(3):475–478CrossRefADSGoogle Scholar
  59. 59.
    Mitani S, Fujimori H, Ohnuma S (1997) Spin-dependent tunneling phenomena in insulating granular systems. J Magn Magn Mater 165(1–3):141–148CrossRefADSGoogle Scholar
  60. 60.
    Honda S, Okada T, Nawate M et al (1997) Bias voltage dependence of tunneling giant magnetoresistance in heterogeneous Fe-SiO2 granular films. Phys Rev B 56(22):14566–14573CrossRefADSGoogle Scholar
  61. 61.
    Hayakawa Y, Hasegawa N et al (1996) Microstructure and magnetoresistance of Fe-Hf-O films with high electrical resistivity. J Magn Magn Mater 154(2):175–182CrossRefADSGoogle Scholar
  62. 62.
    Strijkers GJ, Swagten HJM, Rulkens B et al (1998) Temperature dependence of the resistivity and tunneling magnetoresistance of sputtered FeHf(Si)O cermet films. J Appl Phys 84(5):2749–2753Google Scholar
  63. 63.
    Huang YH, Hsu JH, Chen JW (1998) Granular Fe–Pb–O films with large tunneling magnetoresistance. Appl Phys Lett 72(17):2171–2173CrossRefADSGoogle Scholar
  64. 64.
    Huang YH, Hsu JH, Chen JW (1997) Thickness dependence of tunneling magnetoresistance effect in granular Fe–Al O films. IEEE Trans Magn 33(5):3556–3558CrossRefADSGoogle Scholar
  65. 65.
    Ohnuma M, Hono K, Onodera H et al (2000) Microstructure and magnetic properties of Co-Al-O granular thin films. J Appl Phys 87(2):817–823CrossRefADSGoogle Scholar
  66. 66.
    Ohnuma M, Hono K, Abe E et al (1997) Microstructure of Co–Al–O granular thin films. J Appl Phys 82(11):5646–5652CrossRefADSGoogle Scholar
  67. 67.
    Ohnuma S, Fujimori H, Mitani S et al (1996) High frequency magnetic properties in metal–nonmetal granular films. J Appl Phys 79(8):5130–5135CrossRefADSGoogle Scholar
  68. 68.
    Fujimori H, Mitani S, Ohnuma S (1996) Tunnel-type GMR in Co-Al-O insulated granular system – its oxygen-concentration dependence. J Magn Magn Mater 156(1–3):311–314CrossRefADSGoogle Scholar
  69. 69.
    Kobayashi N, Ohnuma S, Murakami S et al (1998) Enhancement of low-field-magnetoresistive response of tunnel-type magnetoresistance in metal–nonmetal granular thin films. J Magn Magn Meter 188(1–2):30–34CrossRefADSGoogle Scholar
  70. 70.
    Mitani S et al (1998) Enhanced magnetoresistance in insulating granular systems: Evidence for higher-order tunneling. Phys Rev Lett 81:2799Google Scholar
  71. 71.
    Sun JZ et al (1996) Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganite perovskites. Appl Phys Lett 69(21):3266–3268CrossRefADSGoogle Scholar
  72. 72.
    Miyazaki T (1995) Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J Magn Magn Mater 139:L231–L234CrossRefADSGoogle Scholar
  73. 73.
    Fagan AJ, Viret M, Coey JMD (1995) Giant magnetoresistance in bulk mechanically alloyed Co-Ag. J Phys Condens Matter 7(47):8953–8966CrossRefADSGoogle Scholar
  74. 74.
    McGuire TR (1975) Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans Magn 11(4):1018–1038MathSciNetCrossRefADSGoogle Scholar
  75. 75.
    Rodmacq B, Palumbo G, Gerard P (1993) Magnetoresistive properties and thermal stability of Ni-Fe/Ag multilayers. J Magn Magn Mater 118(1/2):L11–L16CrossRefADSGoogle Scholar
  76. 76.
    Viret M et al (1997) Low-field colossal magnetoresistance in manganite tunnel spin valves. Europhys Lett 39(5):545–549CrossRefADSGoogle Scholar
  77. 77.
    Hwang HY, Cheong SW et al (1996) Spin-polarized intergrain tunneling in La{2/3} Sr{1/3} MnO {3}. Phys Rev Lett 77(10):2041–2044CrossRefADSGoogle Scholar
  78. 78.
    Ju HL, Sohn H (1997) Role of grain boundaries in double exchange manganite oxides La1-xAxMnO3 (A = Ba, Ca). Solid State Commun 102(6):463–466CrossRefADSGoogle Scholar
  79. 79.
    Shreekala R, Rajeswari M et al (1997) Effect of crystallinity on the magnetoresistance in perovskite manganese oxide thin films. Appl Phys Lett 71(2):282–284CrossRefADSGoogle Scholar
  80. 80.
    Coey JMD (1999) Powder magnetoresistance. J Appl Phys 85(8):5576–5581CrossRefADSGoogle Scholar
  81. 81.
    Kuncser V, Mustata I et al (2005) Fe–Cu granular thin films with giant magnetoresistance by thermionic vacuum arc method: Preparation and structural characterization. Surface & Coatings Technology 200:980–983CrossRefGoogle Scholar
  82. 82.
    Tanase SI et al (2010) Tunneling magnetoresistance in Co-Ni-N/Al granular thin films. Mater Sci Eng B 167:119–123CrossRefGoogle Scholar
  83. 83.
    Tsukagoshi K et al (1999) Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature (London) 401:572–574CrossRefADSGoogle Scholar
  84. 84.
    Zare-Kolsaraki H et al (2004) Spin-dependent transport in films composed of Co clusters and C fullerenes. Eur Phys J B 40:103CrossRefADSGoogle Scholar
  85. 85.
    Hueso LE, Pruneda JM et al (2007) Transformation of spin information into large electrical signals using carbon nanotubes. Nature (London) 445:410CrossRefADSGoogle Scholar
  86. 86.
    Sakai S, Yakushiji K et al (2006) Tunnel magnetoresistance in Co nanoparticle/Co–C compound hybrid system. Appl Phys Lett 89:113118CrossRefADSGoogle Scholar
  87. 87.
    Sakai S, Yakushiji K, Mitani S et al (2007) Magnetic and magnetotransport properties in nanogranular Co/C60-Co film with high magnetoresistance. Mater Trans 48:754CrossRefGoogle Scholar
  88. 88.
    Sakai S, Sugai I et al (2007) Giant tunnel magnetoresistance in codeposited fullerene-cobalt films in the low bias-voltage regime. Appl Phys Lett 91:242104CrossRefADSGoogle Scholar
  89. 89.
    Miwa S, Shiraishi M (2006) Spin – dependent transport in C60–Co nano composites. Jpn J Appl Phys Part 2 45:L717CrossRefGoogle Scholar
  90. 90.
    Miwa S, Shiraishi M et al (2007) Tunnel magnetoresistance of C60-Co nanocomposites and spin-dependent transport in organic semiconductors. Phys Rev B 76:214414CrossRefADSGoogle Scholar
  91. 91.
    Tanabe S, Miwa S et al (2007) Spin-dependent transport in nanocomposites of Alq molecules and cobalt nanoparticles. Appl Phys Lett 91:063123CrossRefADSGoogle Scholar
  92. 92.
    Sugai I, Sakai S et al (2010) Composition dependence of magnetic and magnetotransport properties in C–Co granular thin films. J Appl Phys 108:063920CrossRefADSGoogle Scholar
  93. 93.
    Prinz GA (1998) Magnetoelectronics. Science 282:1660–1663CrossRefGoogle Scholar
  94. 94.
    Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222CrossRefADSGoogle Scholar
  95. 95.
    Langer L et al (1996) Quantum transport in a multiwalled carbon nanotube. Phys Rev Lett 76:479–482CrossRefADSGoogle Scholar
  96. 96.
    Dai H, Wong EW, Lieber CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526CrossRefADSGoogle Scholar
  97. 97.
    Ebbesen TW et al (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56CrossRefADSGoogle Scholar
  98. 98.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, SingaporeCrossRefGoogle Scholar
  99. 99.
    Bachtold A et al (1998) In: Kuzmany H, Fink J, Mehring M, Roth S (eds) Proceedings of 12th international winter school on electronic properties of novel materials. American Institute of Physics, New York, pp 65–68Google Scholar
  100. 100.
    Bachtold A et al (1999) Aharonov-Bohm oscillations in carbon nanotubes. Nature 397:673–675CrossRefADSGoogle Scholar
  101. 101.
    Frank S et al (1998) Carbon nanotube quantum resistors. Science 280:1744–1746CrossRefADSGoogle Scholar
  102. 102.
    Hueso LE et al (2007) Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445:410–413CrossRefADSGoogle Scholar
  103. 103.
    Zhao XM et al (2009) Magnetic properties, microstructures and magnetoresistance effect in Co/Alq3 granular film. J Magn Magn Mater 321:418–422CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Nanjing National Laboratory of MicrostructuresNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Chemistry DepartmentHong Kong Baptist UniversityHong KongPeople’s Republic of China

Personalised recommendations