Advertisement

Multi-contact Motion Planning and Control

  • Karim Bouyarmane
  • Stéphane Caron
  • Adrien Escande
  • Abderrahmane Kheddar
Living reference work entry

Abstract

The essence of humanoid robots is their ability to reproduce human skills in locomotion and manipulation. Early efforts in humanoid research were dedicated to bipedal walking, first on flat terrains and recently on uneven ones, while the manipulation capabilities inherit from the literature in bimanual and dexterous-hand manipulation. In practice, the two problems interact largely. Locomotion in cluttered spaces benefits from extra contacts between any part of the robot and the environment, such as when grippers grasp a handrail during stair climbing, while legs can conversely enhance manipulation capabilities, such as when arching the whole body to augment contact pressure at an end effector. The two problems share the same background: they are governed by non-smooth dynamics (friction and impacts at contacts) under viability constraints including dynamic stability. Consequently, they are now solved jointly. This chapter highlights the state-of-the-art techniques used for this purpose in multi-contact planning and control.

Keywords

Multi-contact motion planning Multi-contact motion control QP control Multi-contact predictive control 

References

  1. 1.
    T. Arakawa, T. Fukuda, Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of GA, EP layers, in IEEE International Conference on Robotics and Automation, vol. 1, 1997, pp. 211–216Google Scholar
  2. 2.
    H. Audren, A. Kheddar, P. Gergondet, Stability polygons reshaping and morphing for smooth multi-contact transitions and force control of humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, Cancun, 2016, pp. 1037–1044Google Scholar
  3. 3.
    H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, E. Yoshida, Model preview control in multi-contact motion – application to a humanoid robot, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014, pp. 4030–4035Google Scholar
  4. 4.
    D.J. Balkcom, J.C. Trinkle, Computing wrench cones for planar rigid body contact tasks. Int. J. Robot. Res. 21(12), 1053–1066 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Benallegue, A. Escande, S. Miossec, A. Kheddar, Fast C 1 proximity queries using support mapping of sphere-torus-patches bounding volumes, in 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, pp. 483–488Google Scholar
  6. 6.
    A. Bolotnikova, K. Chappellet, A. Paolillo, A. Escande, G. Anbarjafari, A. Suarez-Roos, P. Rabaté, A. Kheddar, A circuit-breaker use-case operated by a humanoid in aircraft manufacturing, in IEEE Conference on Automation Science and Engineering, Xi’an, 2017Google Scholar
  7. 7.
    K. Bouyarmane, A. Escande, F. Lamiraux, A. Kheddar, Potential field guide for humanoid multicontacts acyclic motion planning, in 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, pp. 1165–1170Google Scholar
  8. 8.
    K. Bouyarmane, A. Kheddar, Static multi-contact inverse problem for multiple Humanoid robots and manipulated objects, in 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, 2010, pp. 8–13Google Scholar
  9. 9.
    K. Bouyarmane, A. Kheddar, Fem-based static posture planning for a humanoid robot on deformable contact support, in 2011 11th IEEE-RAS International Conference on Humanoid Robots, Bled, 2011, pp. 487–492Google Scholar
  10. 10.
    K. Bouyarmane, A. Kheddar, Multi-contact stances planning for multiple agents, in IEEE International Conference on Robotics and Automation, Shanghai, 2011, pp. 5246–5253Google Scholar
  11. 11.
    K. Bouyarmane, A. Kheddar, Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 2011, pp. 4414–4419Google Scholar
  12. 12.
    K. Bouyarmane, A. Kheddar, Humanoid robot locomotion and manipulation step planning. Adv. Robot. 26(10), 1099–1126 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Bouyarmane, A. Kheddar, On the dynamics modeling of free-floating-base articulated mechanisms and applications to humanoid whole-body dynamics and control, in 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2012), pp. 36–42Google Scholar
  14. 14.
    K. Bouyarmane, A. Kheddar, Non-decoupled locomotion and manipulation planning for low-dimensional systems. Int. J. Intell. Robot. Syst. (to appear). https://doi.org/10.1007/s10846-017-0692-5
  15. 15.
    K. Bouyarmane, J. Vaillant, N. Sugimoto, F. Keith, J.I. Furukawa, J. Morimoto, Brain-machine interfacing control of whole-body humanoid motion. Front. Syst. Neurosci. 8, 138 (2014)CrossRefGoogle Scholar
  16. 16.
    C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, P.B. Wieber, A robust linear MPC approach to online generation of 3d biped walking motion, in IEEE-RAS International Conference on Humanoid Robots (IEEE, 2015), pp. 595–601Google Scholar
  17. 17.
    T. Bretl, Motion planning of multi-limbed robots subject to equilibrium constraints: the free-climbing robot problem. Int. J. Robot. Res. 25(4), 317–342 (2006)CrossRefGoogle Scholar
  18. 18.
    T. Bretl, S. Lall, Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–807 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Brossette, A. Escande, G. Duchemin, B. Chretien, A. Kheddar, Humanoid posture generation on non-Euclidean manifolds, in IEEE-RAS International Conference on Humanoid Robots, 2015, pp. 352–358. doi:  https://doi.org/10.1109/HUMANOIDS.2015.7363574
  20. 20.
    S. Caron, Computational foundation for planner-in-the-loop multi-contact whole-body control of humanoid robots. Ph.D. thesis, The University of Tokyo, 2016. See p. 81 for a proof of Proposition 4Google Scholar
  21. 21.
    S. Caron, A. Kheddar, Multi-contact walking pattern generation based on model preview control of 3D COM accelerations, in IEEE-RAS International Conference on Humanoid Robots, Cancun, 2016, pp. 550–557Google Scholar
  22. 22.
    S. Caron, A. Kheddar, Dynamic walking over rough terrains by nonlinear predictive control of the floating-base inverted pendulum, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, 2017Google Scholar
  23. 23.
    S. Caron, Q.C. Pham, Y. Nakamura, Leveraging cone double description for multi-contact stability of humanoids with applications to statics and dynamics, in Robotics: Science and System, 2015Google Scholar
  24. 24.
    S. Caron, Q.C. Pham, Y. Nakamura, Stability of surface contacts for humanoid robots: closed-form formulae of the contact wrench for rectangular support areas, in IEEE International Conference on Robotics and Automation, 2015, pp. 5107–5112Google Scholar
  25. 25.
    S. Caron, Q.C. Pham, Y. Nakamura, ZMP support areas for multi-contact mobility under frictional constraints. IEEE Trans. Robot. 33, 67–80 (2017). doi:  https://doi.org/10.1109/TRO.2016.2623338
  26. 26.
    J. Carpentier, S. Tonneau, M. Naveau, O. Stasse, N. Mansard, A versatile and efficient pattern generator for generalized legged locomotion, in IEEE International Conference on Robotics and Automation, Stockholm, 2016Google Scholar
  27. 27.
    J. Chestnutt, J. Kuffner, K. Nishiwaki, S. Kagami, Planning biped navigation strategies in complex environments, in IEEE-RAS International Conference on Humanoid Robots, 2003Google Scholar
  28. 28.
    B. Chrétien, A. Escande, A. Kheddar, Continuously satisfying constraints with contact forces in trajectory optimization for humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 3956–3961. doi:  https://doi.org/10.1109/IROS.2015.7353934
  29. 29.
    B. Chrétien, A. Escande, A. Kheddar, GPU robot motion planning using semi-infinite nonlinear programming. IEEE Trans. Parallel Distrib. Syst. 27(10), 2926–2939 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Cisneros, K. Yokoi, E. Yoshida, Yaw moment compensation by using full body motion, in 2014 IEEE International Conference on Mechatronics and Automation (ICMA) (IEEE, 2014), pp. 119–125Google Scholar
  31. 31.
    H. Dai, R. Tedrake, Planning robust walking motion on uneven terrain via convex optimization, in IEEE-RAS International Conference on Humanoid Robots, Cancun, 2016, pp. 579–586Google Scholar
  32. 32.
    A. Del Prete, S. Tonneau, N. Mansard, Fast algorithms to test robust static equilibrium for legged robots, in IEEE International Conference on Robotics and Automation, Stockholm, 2016Google Scholar
  33. 33.
    A. Escande, A. Kheddar, Contact planning for acyclic motion with tasks constraints, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009Google Scholar
  34. 34.
    A. Escande, A. Kheddar, S. Miossec, Planning support contact-points for humanoid robots and experiments on HRP-2, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006Google Scholar
  35. 35.
    A. Escande, A. Kheddar, S. Miossec, Planning contact points for humanoid robots. Robot. Auton. Syst. 61(5), 428–442 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Escande, A. Kheddar, S. Miossec, S. Garsault, Planning support contact-points for acyclic motions and experiments on HRP-2, in International Symposium on Experimental Robotics, 2008Google Scholar
  37. 37.
    C. Esteves, G. Arechavelata, J. Pettré, J.P. Laumond, Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)CrossRefGoogle Scholar
  38. 38.
    B. Faverjon, P. Tournassoud, Planning of manipulators with a high number of degrees of freedom, in IEEE International Conference on Robotics and Automation, 1987Google Scholar
  39. 39.
    R. Featherstone, Rigid Body Dynamics Algorithms (Springer, US, 2014)MATHGoogle Scholar
  40. 40.
    F. Flacco, A. Paolillo, A. Kheddar, Residual-based contacts estimation for humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, Cancun, 2016, pp. 409–415Google Scholar
  41. 41.
    K. Fukuda, A. Prodon, Double description method revisited, in Combinatorics and Computer Science ed. by M. Deza, R. Euler, I. Manoussakis. Lecture Notes in Computer Science, vol 1120 (Springer, Berlin/Heidelberg, 1996), pp. 91–111Google Scholar
  42. 42.
    E.G. Gilbert, D.W. Johnson, S.S. Keerthi, A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Trans. Robot. Autom. 4, 193–203 (1988)CrossRefGoogle Scholar
  43. 43.
    K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi, H. Hirukawa, Real-time planning of humanoid robot’s gait for force-controlled manipulation. IEEE/ASME Trans. Mechatron. 12(1), 53–62 (2007)CrossRefGoogle Scholar
  44. 44.
    K. Hauser, Fast interpolation and time-optimization with contact. Int. J. Robot. Res. 33(9), 1231–1250 (2014)CrossRefGoogle Scholar
  45. 45.
    K. Hauser, T. Bretl, J.C. Latombe, Non-gaited humanoid locomotion planning, in IEEE-RAS International Conference on Humanoid Robots, 2005Google Scholar
  46. 46.
    K. Hauser, T. Bretl, J.C. Latombe, K. Harada, B. Wilcox, Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27(11–12), 1325–1349 (2008)CrossRefGoogle Scholar
  47. 47.
    A. Herdt, H. Diedam, P.B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online walking motion generation with automatic footstep placement. Adv. Robot. 24(5–6), 719–737 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Herzog, N. Rotella, S. Schaal, L. Righetti, Trajectory generation for multi-contact momentum control, in IEEE-RAS International Conference on Humanoid Robots, 2015, pp. 874–880Google Scholar
  49. 49.
    H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa, A universal stability criterion of the foot contact of legged robots – adios ZMP, in IEEE International Conference on Robotics and Automation, 2006Google Scholar
  50. 50.
    M.A. Hopkins, D.W. Hong, A. Leonessa, Humanoid locomotion on uneven terrain using the time-varying divergent component of motion, in 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2014), pp. 266–272Google Scholar
  51. 51.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’03), vol. 2 (IEEE, 2003), pp. 1620–1626Google Scholar
  52. 52.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirukawa, The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation, in Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (IEEE, 2001), pp. 239–246Google Scholar
  53. 53.
    L.E. Kavraki, P. Svestka, J. Claude Latombe, M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580 (1996)CrossRefGoogle Scholar
  54. 54.
    M. Kudruss, M. Naveau, O. Stasse, N. Mansard, C. Kirches, P. Soueres, K. Mombaur, Optimal control for whole-body motion generation using center-of-mass dynamics for predefined multi-contact configurations, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (IEEE, 2015), pp. 684–689Google Scholar
  55. 55.
    J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue, Dynamically-stable motion planning for humanoid robots. Auton. Robot. 12, 105–118 (2002)CrossRefMATHGoogle Scholar
  56. 56.
    J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, Footstep planning among obstacles for biped robots, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001Google Scholar
  57. 57.
    S. Kuindersma, F. Permenter, R. Tedrake, An efficiently solvable quadratic program for stabilizing dynamic locomotion, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2014), pp. 2589–2594Google Scholar
  58. 58.
    A. Kumar Pandey, R. Gelin, R. Alami, R. Viry, A. Buendia, R. Meertens, M. Chetouani, L. Devilliers, M. Tahon, D. Filliat, Y. Grenier, M. Maazaoui, A. Kheddar, F. Lerasle, L.F. Duval, Romeo2 project: humanoid robot assistant and companion for everyday life: I. Situation assessment for social intelligence, in International Workshop on Artificial Intelligence and Cognition, Torino, 2014, pp. 140–147Google Scholar
  59. 59.
    J.C. Latombe, Robot Motion Planning (Kluwer Academic Publishers, Boston, 1991)CrossRefMATHGoogle Scholar
  60. 60.
    S. LaValle, J. Kuffner, Rapidly-exploring random trees: progress and prospects, in Algorithmic and Computational Robotics: New Direction, ed. by B. Donald, K. Lynch, D. Rus (A. K. Peters, Wellesley, 2001), pp. 293–308Google Scholar
  61. 61.
    S.M. LaValle, Planning Algorithms (Cambridge University Press, New York, 2006)CrossRefMATHGoogle Scholar
  62. 62.
    O. Lefebvre, F. Lamiraux, D. Bonnafous, Fast computation of robot-obstacle interactions in nonholonomic trajectory deformation, in Proceedings of the IEEE International Conference on Robotics and Automation, 2005Google Scholar
  63. 63.
    S. Lengagne, J. Vaillant, E. Yoshida, A. Kheddar, Generation of whole-body optimal dynamic multi-contact motions. Int. J. Robot. Res. 32(9–10), 1104–1119 (2013)CrossRefGoogle Scholar
  64. 64.
    A.M. López, J. Vaillant, F. Keith, P. Fraisse, A. Kheddar, Compliant control of a humanoid robot helping a person stand up from a seated position, in 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2014), pp. 817–822Google Scholar
  65. 65.
    L. Manuelli, R. Tedrake, Localizing external contact using proprioceptive sensors: the contact particle filter, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejon, 2016, pp. 5062–5069Google Scholar
  66. 66.
    T. Mattioli, M. Vendittelli, Interaction force reconstruction for humanoid robots. IEEE Robot. Autom. Lett. 2(1), 282–289 (2017)CrossRefGoogle Scholar
  67. 67.
    I. Mordatch, M. De Lasa, A. Hertzmann, Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. (SIGGRAPH)) 29(4), 71 (2010)Google Scholar
  68. 68.
    I. Mordatch, E. Todorov, Z. Popović, Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. (TOG) 31(4), 43 (2012)Google Scholar
  69. 69.
    T. Moulard, F. Lamiraux, K. Bouyarmane, E. Yoshida, Roboptim: an optimization framework for robotics, in Robomec, 2013, p. 4pGoogle Scholar
  70. 70.
    K. Nagasaka, T. Fukushima, H. Shimomura, Whole-body control of a humanoid robot based on generalized inverse dynamics and multi-contact stabilizer that can take acount of contact constraints, in Robotics Symposium (In Japanese), vol. 17, 2012Google Scholar
  71. 71.
    M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, P. Souères, A reactive walking pattern generator based on nonlinear model predictive control. IEEE Robot. Autom. Lett. 2(1), 10–17 (2017)CrossRefGoogle Scholar
  72. 72.
    D.E. Orin, A. Goswami, S.H. Lee, Centroidal dynamics of a humanoid robot. Auton. Robot. 35(2–3), 161–176 (2013)CrossRefGoogle Scholar
  73. 73.
    J.S. Pang, J. Trinkle, Stability characterizations of rigid body contact problems with coulomb friction. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 80(10), 643–663 (2000)Google Scholar
  74. 74.
    A. Paolillo, P. Gergondet, A. Cherubini, M. Vendittelli, A. Kheddar, Autonomous car driving by a humanoid robot. J. Field Robot. (to appear).  https://doi.org/https://doi.org/10.1002/rob.21731
  75. 75.
    J. Pettré, J.P. Laumond, T. Siméon, A 2-stages locomotion planner for digital actors, in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003Google Scholar
  76. 76.
    K. Pfeiffer, A. Escande, A. Kheddar, Nut fastening with a humanoid robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, 2017Google Scholar
  77. 77.
    Q.C. Pham, O. Stasse, Time-optimal path parameterization for redundantly actuated robots: a numerical integration approach. IEEE/ASME Trans. Mechatron. 20(6), 3257–3263 (2015)CrossRefGoogle Scholar
  78. 78.
    B. Ponton, A. Herzog, S. Schaal, L. Righetti, A convex model of humanoid momentum dynamics for multi-contact motion generation, in IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (IEEE, 2016), pp. 842–849Google Scholar
  79. 79.
    Z. Qiu, A. Escande, A. Micaelli, T. Robert, Human motions analysis and simulation based on a general criterion of stability, in International Symposium on Digital Human Modeling, 2011Google Scholar
  80. 80.
    L. Righetti, M. Mistry, J. Buchli, S. Schaal, Inverse dynamics control of floating-base robots with external contraints: an unified view, in Proceedings of the IEEE International Conference on Robotics and Automation, 2011Google Scholar
  81. 81.
    L. Saab, O. Ramos, N. Mansard, P. Soueres, J.Y. Fourquet, Generic dynamic motion generation with multiple unilateral constraints, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011Google Scholar
  82. 82.
    L. Saab, O.E. Ramos, F. Keith, N. Mansard, P. Souères, J.Y. Fourquet, Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29(2), 346–362 (2013)CrossRefGoogle Scholar
  83. 83.
    T. Saida, Y. Yokokohji, T. Yoshikawa, Fsw (feasible solution of wrench) for multi-legged robots, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’03), vol. 3 (IEEE, 2003), pp. 3815–3820Google Scholar
  84. 84.
    J. Salini, V. Padois, P. Bidaud, Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions, in Proceedings of the IEEE International Conference on Robotics and Automation, 2011Google Scholar
  85. 85.
    P. Sardain, G. Bessonnet, Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34(5), 630–637 (2004)CrossRefGoogle Scholar
  86. 86.
    L. Sentis, J. Park, O. Khatib, Compliant control of multi-contact and center of mass behaviors in humanoid robots. IEEE Trans. Robot. 26(3), 483–501 (2010)CrossRefGoogle Scholar
  87. 87.
    T. Siméon, J.P. Laumond, J. Cortès, A. Sahbani, Manipulation planning with probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 729–746 (2004)CrossRefGoogle Scholar
  88. 88.
    J.C. Trinkle, J.S. Pang, S. Sudarsky, G. Lo, On dynamic multi-rigid-body contact problems with coulomb friction. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 77(4), 267–279 (1997)Google Scholar
  89. 89.
    B. Ugurlu, J.A. Saglia, N.G. Tsagarakis, D.G. Caldwell, Yaw moment compensation for bipedal robots via intrinsic angular momentum constraint. Int. J. Humanoid Robot. 9(04) (2012)Google Scholar
  90. 90.
    J. Vaillant, K. Bouyarmane, A. Kheddar, Multi-character physical and behavioral interactions controller. IEEE Trans. Vis. Comput. Graph. 23(6), 1650–1662 (2017)CrossRefGoogle Scholar
  91. 91.
    J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande, K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida, S. Kajita, F. Kanehiro, Multi-contact vertical ladder climbing with an HRP-2 humanoid. Auton. Robot. 40(3), 561–580 (2016)CrossRefGoogle Scholar
  92. 92.
    K. Van Heerden, Real-time variable center of mass height trajectory planning for humanoids robots. IEEE Robot. Autom. Lett. 2(1), 135–142 (2017)CrossRefGoogle Scholar
  93. 93.
    J. Vorndamme, M. Schappler, S. Haddadin, Collision detection, isolation and identification for humanoids, in IEEE International Conference on Robotics and Automation, 2017, pp. 4754–4761Google Scholar
  94. 94.
    A. Wachter, L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)MathSciNetCrossRefMATHGoogle Scholar
  95. 95.
    P.M. Wensing, D.E. Orin, High-speed humanoid running through control with a 3D-slip model, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2013), pp. 5134–5140Google Scholar
  96. 96.
    P.B. Wieber, Holonomy and nonholonomy in the dynamics of articulated motion, in Fast Motions in Biomechanics and Robotics, 2006, pp. 411–425Google Scholar
  97. 97.
    P.B. Wieber, Trajectory free linear model predictive control for stable walking in the presence of strong perturbations, in 6th IEEE-RAS International Conference on Humanoid Robots (IEEE, 2006), pp. 137–142Google Scholar
  98. 98.
    K. Yamane, J. Kuffner, J.K. Hodgins, Synthesizing animations of human manipulation tasks. ACM Trans. Grap. (Proc. SIGGRAPH 2004) 23(3), 530–537 (2004)Google Scholar
  99. 99.
    K. Yamane, Y. Nakamura, Dynamics filter-concept and implementation of online motion generator for human figures. IEEE Trans. Robot. Autom. 19(3), 421–432 (2003)CrossRefGoogle Scholar
  100. 100.
    E. Yoshida, C. Esteves, I. Belousov, J.P. Laumond, K. Yokoi, Planning 3D collision-free dynamic robotic motion through iterative reshaping. IEEE Trans. Robot. 24(5), 1186–1198 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Karim Bouyarmane
    • 1
  • Stéphane Caron
    • 2
  • Adrien Escande
    • 3
  • Abderrahmane Kheddar
    • 4
    • 5
  1. 1.CNRS, Inria Nancy - Grand Est, Loria UMR 7503, Larsen teamUniversité de LorraineVandœuvre-Lès-NancyFrance
  2. 2.Interactive Digital Human (IDH)CNRS-University of MontpellierMontpellierFrance
  3. 3.CNRS-AIST Joint Robotics Laboratory (JRL)TsukubaJapan
  4. 4.Interactive Digital Human (IDH)CNRS-University of MontpellierMontpellierFrance
  5. 5.CNRS-AIST Joint Robotics Laboratory (JRL)TsukubaJapan

Personalised recommendations