Advertisement

Biped Footstep Planning

  • Nicolas Perrin
Living reference work entry

Abstract

Planning footsteps before the actual walking motion is a way to ignore the dynamic complexity of bipedal walking in the motion planning process without losing the possibility to exploit the essential characteristic of walking: the fact that it relies on isolated contacts with the ground and therefore provides the ability to traverse irregular or discontinuous terrain. The duality between a continuous environment and discrete sequences of contacts confers to footstep planning a hybrid nature and an interesting theoretical aspect, which adds up to its obvious practical interest. Well incorporated and efficient footstep planning abilities would give humanoid robots a navigation autonomy allowing them to perform a great number of versatile tasks in unstructured environments. Many approaches have been considered to obtain efficient footstep planning, for example, using only a finite number of predefined steps or bounding boxes for fast collision checking. And for really reactive footstep planning, dynamics have to be put back into the equation, either by merging footstep planning with gait control or by adaptively switching between different layers of planning. In this chapter, we give an overview of the main techniques that have been proposed and tested over the past 15 years.

Keywords

Footstep planning Motion planning Bipedal locomotion 

References

  1. 1.
    G. Arechavaleta, J.-P. Laumond, H. Hicheur, A. Berthoz, The nonholonomic nature of human locomotion: a modeling study, in IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, pp. 158–163Google Scholar
  2. 2.
    O. Arslan, U. Saranli, O. Morgul, Reactive footstep planning for a planar spring mass hopper, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 160–166Google Scholar
  3. 3.
    Y. Ayaz, K. Munawar, M.B. Malik, A. Konno, M. Uchiyama, Human-like approach to footstep planning among obstacles for humanoid robots. Int. J. Humanoid Rob. 4(01), 125–149 (2007)CrossRefGoogle Scholar
  4. 4.
    J.-D. Boissonnat, O. Devillers, S. Lazard, Motion planning of legged robots. SIAM J. Comput. 30(1), 218–246 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J.M. Bourgeot, N. Cislo, B. Espiau, Path-planning and tracking in a 3D complex environment for an anthropomorphic biped robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 2509–2514Google Scholar
  6. 6.
    S. Candido, Y.-T. Kim, S. Hutchinson, An improved hierarchical motion planner for humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, 2008, pp. 654–661Google Scholar
  7. 7.
    J. Chestnutt, J.J. Kuffner, A tiered planning strategy for biped navigation, in IEEE/RAS International Conference on Humanoid Robots, 2004, pp. 422–436Google Scholar
  8. 8.
    J. Chestnutt, J.J. Kuffner, K. Nishiwaki, S. Kagami, Planning biped navigation strategies in complex environments, in IEEE/RAS International Conference on Humanoid Robots, 2003Google Scholar
  9. 9.
    J. Chestnutt, M. Lau, G. Cheung, J.J. Kuffner, J. Hodgins, T. Kanade, Footstep planning for the Honda ASIMO humanoid, in IEEE International Conference on Robotics and Automation, 2005, pp. 629–634Google Scholar
  10. 10.
    J. Chestnutt, K. Nishiwaki, J.J. Kuffner, S. Kagami, An adaptive action model for legged navigation planning, in IEEE-RAS International Conference on Humanoid Robots, 2007, pp. 196–202Google Scholar
  11. 11.
    J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J.J. Kuffner, S. Kagami, Biped navigation in rough environments using on-board sensing, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 3543–3548Google Scholar
  12. 12.
    S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taïx, J.-P. Laumond, Dynamic walking and whole-body motion planning for humanoid robots: an integrated approach. Int. J. Humanoid Rob. 32(9-10), 1089–1103 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Deits, R. Tedrake, Footstep planning on uneven terrain with mixed-integer convex optimization. in IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 279–286Google Scholar
  14. 14.
    A. El Khoury, M. Taïx, F. Lamiraux, Path optimization for humanoid walk planning: an efficient approach, in International Conference on Informatics in Control, Automation and Robotics, 2011, pp. 179–184Google Scholar
  15. 15.
    J. Garimort, A. Hornung, Humanoid navigation with dynamic footstep plans, in IEEE International Conference on Robotics and Automation, 2011, pp. 3982–3987Google Scholar
  16. 16.
    J.S. Gutmann, M. Fukuchi, M. Fujita, A modular architecture for humanoid robot navigation, in IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 26–31Google Scholar
  17. 17.
    K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, B. Wilcox, Motion planning for legged robots on varied terrain. Int. J. Rob. Res. 27(11-12), 1325–1349 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online walking motion generation with automatic footstep placement. Adv. Rob. 24(5-6), 719–737 (2010)CrossRefGoogle Scholar
  19. 19.
    Y.-D. Hong, Y.-H. Kim, J.-H. Han, J.-K. Yoo, J.-H. Kim, Evolutionary multiobjective footstep planning for humanoid robots. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(4), 520–532 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Hornung, M. Bennewitz, Adaptive level-of-detail planning for efficient humanoid navigation, in IEEE International Conference on Robotics and Automation, 2012, pp. 997–1002Google Scholar
  21. 21.
    A. Hornung, A. Dornbush, M. Likhachev, M. Bennewitz, Anytime search-based footstep planning with suboptimality bounds, in IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 674–679Google Scholar
  22. 22.
    A. Hornung, K.M. Wurm, M. Bennewitz, Humanoid robot localization in complex indoor environments, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 1690–1695Google Scholar
  23. 23.
    A. Ibanez, P. Bidaud, V. Padois, Emergence of humanoid walking behaviors from mixed-integer model predictive control, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4014–4021Google Scholar
  24. 24.
    S. Kagami, K. Nishiwaki, J.J. Kuffner, K. Okada, M. Inaba, H. Inoue, Vision-based 2.5D terrain modeling for humanoid locomotion, in IEEE International Conference on Robotics and Automation, 2003, pp. 2141–2146Google Scholar
  25. 25.
    O. Kanoun, J.-P. Laumond, E. Yoshida, Planning foot placements for a humanoid robot: a problem of inverse kinematics. Int. J. Rob. Res. 30(4), 476–485 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Koenig, M. Likhachev, D* lite, in National Conference on Artificial Intelligence and Conference on Innovative Applications of Artificial Intelligence, 2002, pp. 476–483Google Scholar
  27. 27.
    J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue, Dynamically-stable motion planning for humanoid robots. Auton. Robot. 12(1), 105–118 (2002)CrossRefzbMATHGoogle Scholar
  28. 28.
    J.J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, Footstep planning among obstacles for biped robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, pp. 500–505Google Scholar
  29. 29.
    S. LaValle, J.J. Kuffner, Randomized kinodynamic planning. Int. J. Rob. Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  30. 30.
    T.-Y. Li, P.-F. Chen, P.-Z. Huang, Motion planning for humanoid walking in a layered environment, in IEEE International Conference on Robotics and Automation, 2003, pp. 3421–3427Google Scholar
  31. 31.
    M. Likhachev, G.J. Gordon, S. Thrun, ARA*: anytime A* with provable bounds on sub-optimality, in Advances in Neural Information Processing Systems (MIT Press, Cambridge, 2003)Google Scholar
  32. 32.
    M. Likhachev, A. Stentz, R* search, in AAAI Conference on Artificial Intelligence, 2008, pp. 344–350Google Scholar
  33. 33.
    H. Liu, Q. Sun, T. Zhang, Hierarchical RRT for humanoid robot footstep planning with multiple constraints in complex environments, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 3187–3194Google Scholar
  34. 34.
    D. Maier, A. Hornung, M. Bennewitz, Real-time navigation in 3D environments based on depth camera data, in IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 692–697Google Scholar
  35. 35.
    D. Maier, C. Lutz, M. Bennewitz, Integrated perception, mapping, and footstep planning for humanoid navigation among 3D obstacles, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 2658–2664Google Scholar
  36. 36.
    P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J.J. Kuffner, T. Kanade, GPU-accelerated real-time 3D tracking for humanoid locomotion and stair climbing, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 463–469Google Scholar
  37. 37.
    P. Michel, J. Chestnutt, J.J. Kuffner, T. Kanade, Vision-guided humanoid footstep planning for dynamic environments, in IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 13–18Google Scholar
  38. 38.
    I. Mordatch, M. De Lasa, A. Hertzmann, Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. 29(4), 71 (2010)Google Scholar
  39. 39.
    K. Nishiwaki, J. Chestnutt, S. Kagami, Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor. Int. J. Rob. Res. 31(11), 1251–1262 (2012)CrossRefGoogle Scholar
  40. 40.
    K. Okada, M. Inaba, H. Inoue, Integration of real-time binocular stereo vision and whole body information for dynamic walking navigation of humanoid robot, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2003, pp. 131–136Google Scholar
  41. 41.
    K. Okada, T. Ogura, A. Haneda, M. Inaba, Autonomous 3D walking system for a humanoid robot based on visual step recognition and 3D foot step planner, in IEEE International Conference on Robotics and Automation, 2005, pp. 623–628Google Scholar
  42. 42.
    N. Perrin, From discrete to continuous motion planning, in Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, Berlin, Springer Berlin Heidelberg, vol. 86, 2013, pp. 89–104Google Scholar
  43. 43.
    N. Perrin, O. Stasse, F. Lamiraux, E. Yoshida, Weakly collision-free paths for continuous humanoid footstep planning, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 4408–4413Google Scholar
  44. 44.
    N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, E. Yoshida, Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Trans. Rob. 28(2), 427–439 (2012)CrossRefGoogle Scholar
  45. 45.
    N. Perrin, O. Stasse, F. Lamiraux, Y.J. Kim, D. Manocha, Real-time footstep planning for humanoid robots among 3D obstacles using a hybrid bounding box, in IEEE International Conference on Robotics and Automation, 2012, pp. 977–982Google Scholar
  46. 46.
    A. Sherikov, D. Dimitrov, P.-B. Wieber, Whole body motion controller with long-term balance constraints, in IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 444–450Google Scholar
  47. 47.
    A. Wu, H. Geyer, The 3-D spring–mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments. IEEE Trans. Rob. 29(5), 1114–1124 (2013)CrossRefGoogle Scholar
  48. 48.
    Z. Xia, G. Chen, J. Xiong, Q. Zhao, K. Chen, A random sampling-based approach to goal-directed footstep planning for humanoid robots, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009, pp. 168–173Google Scholar
  49. 49.
    E. Yoshida, I. Belousov, C. Esteves, J.-P. Laumond, Humanoid motion planning for dynamic tasks, in IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 1–6Google Scholar
  50. 50.
    M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J.A. Bagnell, C.G. Atkeson, J.J. Kuffner, Optimization and learning for rough terrain legged locomotion. Int. J. Rob. Res. 30(2), 175–191 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRSInstitut des Systèmes Intelligents et de Robotique (ISIR)ParisFrance

Personalised recommendations