Domain Wall Memory Device

  • Michael Foerster
  • O. Boulle
  • S. Esefelder
  • R. Mattheis
  • Mathias Kläui
Reference work entry

Abstract

Magnetic domain walls in confined geometries have attracted much interest in the last couple of years for a number of reasons. On the one hand, new physical phenomena such as current-induced domain wall motion due to the highly debated nonadiabatic spin torque and novel spin–orbit torques have been investigated. On the other hand, the proposal of the racetrack memory concept as a universal data storage device has stimulated much research. In such a device, domain walls in magnetic nanowires are used as bits of information which can be shifted, e.g., to locate them at the position of a read head, without the need to move physically any material. The prospect of memory and logic devices has spurred an intense research, in particular into different materials with promising properties for domain walls and domain wall motion. The critical parameters to be optimized are mainly domain wall lateral sizes, directly governing the possible information density, and domain wall movement and pinning/depinning processes that determine access time and energy consumption. The ability to control and manipulate domain walls precisely opens up avenues to designing a range of novel and highly competitive devices.

In this chapter, a review of the properties of magnetic domain walls in nanowires and the possibilities to control and manipulate them is given. Precise control and efficient manipulation of domain walls is the prerequisite for any device. Different material classes and the resulting domain wall types are reviewed. The basic operations that are necessary for a device, i.e., nucleation, displacement, and detection of domain walls, are discussed for these material classes. Examples of devices using magnetic domain walls are briefly reviewed, including memory and logic applications. The first commercial nonvolatile multiturn sensor product that is based on magnetic domain walls and combines sensing and memory is described in more detail.

Keywords

Domain Wall Domain Wall Motion Magnetic Tunnel Junction Perpendicular Magnetic Anisotropy Magnetic Domain Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

1D, 2D, 3D

One, two, or three dimensional

3d

Elements from the first side group in the periodic table with 3D electron in the outer shell, from Sc to Zn, in magnetic context usually Fe, Co, Ni (Mn, Cr), and their alloys

AMR

Anisotropic magnetoresistance

ccw

Counterclockwise

CFAS

Co2FeAl0.4Si0.6

CIDWM

Current-induced domain wall motion

CIP

Current in-plane

CMOS

Complementary metal oxide semiconductor

CPP

Current perpendicular to plane

cw

Clockwise

DC

Direct current

DMI

Dzyaloshinskii–Moriya interaction

DW

Domain wall

DWG

Domain wall generator

EHE

Extraordinary Hall effect

FTH

Fourier transform holography (with X-rays)

GMR

Giant magnetoresistance

IBM

Industrial Business Machines Corporation

IST-RAM

In-plane spin-torque random access memory

LLG

Landau–Lifshitz–Gilbert equation

LSMO

La0.33Sr0.67MnO3

MFM

Magnetic force microscopy

MOKE

Magneto-optical Kerr effect

MR

Magnetoresistance

MRAM

Magnetic random access memory

MTJ

Magnetic tunnel junction

NEC

NEC Corporation

OOMMF

Object Oriented Micromagnetic Framework

OST-RAM

Orthogonal (perpendicular) spin-torque random access memory

PEEM

Photoemission electron microscopy

PL/FL/AL

Perpendicular magnetized layer, free layer, analyzing layer

PMA

Perpendicular magnetic anisotropy

Py

Permalloy (Ni81Fe19)

RAMAC

IBM 305 RAMAC (random access method of accounting and control), first computer with a hard disk drive

RF

Radio frequency

SEM

Scanning electron microscopy

SEMPA

Scanning electron microscopy with polarization analyzer

STO

SrTiO3

STT-RAM

Spin transfer torque magnetic random access memory

STT

Spin transfer torque

STXM

Scanning transmission X-ray microscopy

SW

Spin wave

TEY

Total electron yield

TMR

Tunnel magnetoresistance

TW

Transverse domain wall

VW

Vortex domain wall

XMCD

X-ray magnetic circular dichroism

XMCD-PEEM

X-ray magnetic circular dichroism–photoemission electron microscopy

Constants and Quantities (in the order of first occurrence)

μ

Domain wall mobility

μ0

Vacuum permeability

A

Exchange constant

D, d

Diameter

e

Electron charge

Heff

“Effective” magnetic field acting on m

Hk

Anisotropy field

Hnucleation, Hn

Nucleation magnetic field for domain walls

HP

Propagation magnetic field for domain walls, pinning field

HW

Walker breakdown field

jc, Jc

Critical current density

K

Magnetic anisotropy constant

Kd

Magnetostatic energy difference between Bloch and Néel wall; demagnetizing energy

Keff

Effective anisotropy constant

m

Magnetization vector

MS

Saturation magnetization

NX,Y,Z

Demagnetizing factors

P

Spin polarization

RT

Room temperature

t

Thickness

TC

Curie temperature

u

Effective velocity

w

Width

α

Damping constant

β

Nonadiabatic

γ0

Gyromagnetic ratio

θ

Out-of-plane spin-canting angle

λex, Λ

Exchange length

λsf

Spin-flip length

Notes

Acknowledgments

We thank F. Büttner, A. Bisig, and C. Moutafis for help with various parts of the text and I. Berber for her support. We thank D. Hinzke and U. Nowak for permission to use Fig. 16 and D. Ravelosona for permission to use Figs. 8 and 9.

The authors would like to acknowledge the financial support by the DFG (SFB 767, SPP Graphene, SPP SpinCaT, KL1811), the Landesstiftung Baden Württemberg, the European Research Council via its Starting Independent Researcher Grant (Grant No. ERC-2007-Stg 208162) and Proof-of-Concept Grant schemes, EU RTN SPINSWITCH (MRTN-CT2006035327), the EU IP project IFOX (NMP3-LA-2010 246102), the EU STREP project MAGWIRE (FP7-ICT-2009-5 257707), the EU STREP project MoQuas (FP7-ICT-2013-10 610449), the EU ITN WALL (FP7-PEOPLE-2013-ITN 608031), the Swiss National Science Foundation, and the Graduate School of Excellence Materials Science in Mainz (MAINZ – GSC 266).

References

  1. 1.
    McFadyen R, Fullerton EE, Carey MJ (2006) State-of-the-art magnetic hard disk drives. MRS Bull 31:379CrossRefGoogle Scholar
  2. 2.
    Dee RH (2006) Magnetic tape: the challenge of reaching hard-disk-drive data densities on flexible media. MRS Bull 31:404CrossRefGoogle Scholar
  3. 3.
    Boulle O, Malinowski G, Kläui M (2011) Current-induced domain wall motion in nanoscale ferromagnetic elements. Mater Sci Eng R72:159CrossRefGoogle Scholar
  4. 4.
    Tehrani S, Slaughter JM, Chen E, Durlam M, Shi J, DeHerrera M (1999) Progress and outlook for MRAM technology. IEEE Trans Magn 35:2814ADSCrossRefGoogle Scholar
  5. 5.
    Parkin SSP (2004) Shiftable magnetic shift register and method of using the same. US Patent 6,834,005 and Parkin SSP (2006) Magnetic shift register with shiftable magnetic domains between two regions, and method of using the same. US Patent 7031178 B2Google Scholar
  6. 6.
    Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190ADSCrossRefGoogle Scholar
  7. 7.
    Cowburn R, Petit D, Read D, Petracic O (2007) Data storage device and method. Patent WO 2007/132174A1Google Scholar
  8. 8.
    Parkin SSP (2006) MRS Bull 31:389CrossRefGoogle Scholar
  9. 9.
    Kläui M (2008) Head-to-head domain walls in magnetic nanostructures. J Phys Condens Matter 20:313001ADSCrossRefGoogle Scholar
  10. 10.
    Kläui M, Vaz CAF (2007) Magnetization configurations and reversal in small magnetic elements. In: Kronmüller H, Parkin SSP (eds) Handbook of magnetism and advanced magnetic materials, vol 2. Wiley, ChichesterGoogle Scholar
  11. 11.
    Kronmüller H, Fähnle M (2003) Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Rhensius J, Vaz CAF, Bisig A, Schweitzer S, Heidler J, Körner HS, Locatelli A, Niño MA, Weigand M, Méchin L, Gaucher F, Goering E, Heyderman LJ, Kläui M (2011) Control of spin configuration in half-metallic La0.7Sr0.3MnO3 nano-structures. Appl Phys Lett 99:062508ADSCrossRefGoogle Scholar
  13. 13.
    Fonin M, Hartung C, Rüdiger U, Backes D, Heyderman L, Nolting F, Fraile Rodríguez A, Kläui M (2011) Formation of magnetic domains and domain walls in epitaxial Fe3O4(100) elements (invited). J Appl Phys 109:07D315CrossRefGoogle Scholar
  14. 14.
    Bruno P (1999) Geometrically constrained magnetic wall. Phys Rev Lett 83:2425ADSCrossRefGoogle Scholar
  15. 15.
    Jubert PO, Allenspach R, Bischof A (2004) Magnetic domain walls in constrained geometries. Phys Rev B 69:220410ADSCrossRefGoogle Scholar
  16. 16.
    Vaz CAF, Bland JAC, Lauhoff G (2008) Magnetism in ultrathin film structures. Rep Prog Phys 71:056501ADSCrossRefGoogle Scholar
  17. 17.
    Dennis CL et al (2002) The defining length scales of mesomagnetism: a review. J Phys Cond Mat 14:R1175ADSCrossRefGoogle Scholar
  18. 18.
    Parkin S, Yang SH (2015) Memory on the Ractrack, Nature Nanotech. 10:195ADSCrossRefGoogle Scholar
  19. 19.
    Thiaville A, Nakatani Y (2006) Domain-wall dynamics in nanowires and nanostrips. In: Hillebrands B, Ounadjela K (eds) Spin dynamics in confined magnetic structures, vol 3. Springer, BerlinGoogle Scholar
  20. 20.
    Miltat J, Donahue MJ (2007) Numerical micromagnetics: finite difference methods. In: Kronmüller H, Parkin SSP (eds) Handbook of magnetism and advanced magnetic materials, vol 2. Wiley, ChichesterGoogle Scholar
  21. 21.
    Schrefl T et al. (2007) Numerical methods in micromagnetics (finite element method). In: Kronmüller H, Parkin SSP (eds) Handbook of magnetism and advanced magnetic materials, vol 2. Wiley, ChichesterGoogle Scholar
  22. 22.
    McMichael RD, Donahue MJ (1997) Head to head domain wall structures in thin magnetic strips. IEEE Trans Magn 33:4167ADSCrossRefGoogle Scholar
  23. 23.
    Kläui M, Vaz CAF, Bland JAC, Heyderman LJ, Nolting F, Pavlovska A, Bauer E, Cherifi S, Heun S, Locatelli A (2004) Head-to-head domain wall phase diagram in mesoscopic ring magnets. Appl Phys Lett 85:5637ADSCrossRefGoogle Scholar
  24. 24.
    Laufenberg M et al (2006) Observation of thermally activated domain wall transformations. Appl Phys Lett 88:052507ADSCrossRefGoogle Scholar
  25. 25.
    Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R (2002) Direct observation of internal spin structure of magnetic vortex cores. Science 298:577ADSCrossRefGoogle Scholar
  26. 26.
    Junginger F, Kläui M, Backes D, Krzyk S, Rüdiger U, Kasama T, Dunin-Borkowski RE, Feinberg JM, Harrison RJ, Heyderman LJ (2008) Quantitative determination of vortex core dimensions in head-to-head domain walls using off-axis electron holography. Appl Phys Lett 92:112502ADSCrossRefGoogle Scholar
  27. 27.
    Feldtkeller E, Thomas H (1965) Struktur und Energie von Blochlinien in dünnen ferromagnetischen Schichten. Phys Kondens Mater 4:8ADSGoogle Scholar
  28. 28.
    Nakatani Y, Thiaville A, Miltat J (2005) Head-to-head domain walls in soft nano-strips: A refined phase diagram. J Magn Magn Mater 290:750ADSCrossRefGoogle Scholar
  29. 29.
    Backes D et al (2007) Transverse domain walls in nanoconstrictions. Appl Phys Lett 91:112502ADSCrossRefGoogle Scholar
  30. 30.
    The Object Oriented MicroMagnetic Framework project, ITL = NIST. For details see, http://math.nist.gov/oommf
  31. 31.
    Hashim I, Joo HS, Atwater HA (1995) Structural and magnetic properties of epitaxial Ni80Fe20 thin films on Cu/Si. Surf Rev Lett 2:427CrossRefGoogle Scholar
  32. 32.
    Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, Picozzi S, Gösele U (2009) Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films. Adv Mater 21:4452CrossRefGoogle Scholar
  33. 33.
    Dedkov YS, Rüdiger U, Günterodt G (2002) Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys Rev B 65:064417ADSCrossRefGoogle Scholar
  34. 34.
    Fonin M, Pentcheva R, Dedkov YS, Sperlich M, Vyalikh DV, Scheffler M, Rüdiger U, Güntherodt G (2005) Surface electronic structure of the Fe3O4 (100): Evidence of a half-metal to metal transition. Phys Rev B 72:104436ADSCrossRefGoogle Scholar
  35. 35.
    Fonin M, Dedkov YS, Pentcheva R, Rüdiger U, Güntherodt G (2007) Magnetite: a search for the half-metallic state. J Phys Condens Matter 19:315217ADSCrossRefGoogle Scholar
  36. 36.
    Kläui M, Vaz CAF, Lopez-Diaz L, Bland JAC (2003) Vortex Formation in narrow ferromagnetic rings. J Phys Condens Matter 15:R985ADSCrossRefGoogle Scholar
  37. 37.
    Coey JMD, Viret M, von Molnár S (1999) Mixed-valence manganites. Adv Phys 48:167ADSCrossRefGoogle Scholar
  38. 38.
    Dagotto E (2005) Complexity in strongly correlated electronic systems. Science 309:257ADSCrossRefGoogle Scholar
  39. 39.
    Wohlhüter P et al (2013) The effect of magnetic anisotropy on the spin configurations of patterned La0.7Sr0.3MnO3 elements. J Phys Condens Matter 25:176004ADSCrossRefGoogle Scholar
  40. 40.
    Arnal T, Khvalkovskii AV, Bibes M, Mercey B, Lecoeur P, Haghiri-Gosnet A-M (2007) Electronic properties of domain walls in La2/3Sr1/3MnO3: Magnetotransport measurements on a nanopatterned device. Phys Rev B75:220409RADSCrossRefGoogle Scholar
  41. 41.
    Ruotolo A, Oropallo A, Miletto Granozio F, Pepe GP, Perna P, Scottidi Uccio U, Pullini D (2007) Current-induced domain wall depinning and magnetoresistance in La0.7Sr0.3MnO3 planar spin-valves. Appl Phys Lett 91:132502ADSCrossRefGoogle Scholar
  42. 42.
    Foerster M et al (2014) Efficient spin transfer torque in La2/3Sr1/3MnO3 nanostructures. Appl Phys Lett 104:072410ADSCrossRefGoogle Scholar
  43. 43.
    Finizio S et al (2014) Domain wall transformations and hopping in La0.7Sr0.3MnO3 nanostructures imaged with high resolution x-ray magnetic microscopy. J Phys Cond Matter 26:456003ADSCrossRefGoogle Scholar
  44. 44.
    Jourdan M, Minar J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers HJ, Schönhense G, Ebert H, Felser C, Kläui M (2014) Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat Commun 5:3974ADSCrossRefGoogle Scholar
  45. 45.
    Vaz AF, Rhensius J, Heidler J, Wohlhüter P, Bisig A, Körner HS, Mentes TO, Locatelli A, Le Guyader L, Nolting F, Graf T, Felser C, Heyderman LJ, Kläui M (2011) Spin configurations in Co(2)FeAl(0.4)Si(0.6) Heusler alloy thin film elements. Appl Phys Lett 99:182510ADSCrossRefGoogle Scholar
  46. 46.
    Miyawaki T et al. (2013) The effect of magnetocrystalline anisotropy on the domain structure of patterned Fe2CrSi Heusler alloy thin films. J Appl Phys 114:073905ADSCrossRefGoogle Scholar
  47. 47.
    Kläui M et al (2005) Appl Phys Lett 87:102509ADSCrossRefGoogle Scholar
  48. 48.
    Rothman J, Kläui M, Lopez-Diaz L, Vaz CAF, Bleloch A, Bland JAC, Cui Z, Speaks R (2001) Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. Phys Rev Lett 86:1098ADSCrossRefGoogle Scholar
  49. 49.
    Harte KJ (1968) Theory of magnetization ripple in ferromagnetic films. J Appl Phys 39:1503ADSCrossRefGoogle Scholar
  50. 50.
    Kläui M, Jubert PO, Allenspach R, Bischof A, Bland JAC, Faini G, Rüdiger U, Vaz CAF, Vila L, Vouille C (2005) Direct observation of domain-wall configurations transformed by spin currents. Phys Rev Lett 95:026601ADSCrossRefGoogle Scholar
  51. 51.
    Hayashi M, Thomas L, Bazaliy YB, Rettner C, Moriya R, Jiang X, Parkin SSP (2006) Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys Rev Lett 96:197207ADSCrossRefGoogle Scholar
  52. 52.
    Togawa Y, Kimura T, Harada K, Matsuda T, Tonomura A, Otani Y, Akashi T (2008) Current-excited magnetization reversal under in-plane magnetic field in a nanoscaled ferromagnetic wire. Appl Phys Lett 92:012505ADSCrossRefGoogle Scholar
  53. 53.
    Hubert A, Schäfer R (1998) Magnetic domains. Springer, BerlinGoogle Scholar
  54. 54.
    Sobolev VL (1998) Internal structure of a domain wall in ultrathin magnetic film. J Magn Magn Mater 177:195ADSCrossRefGoogle Scholar
  55. 55.
    Boulle O et al (2009) Reversible switching between bidomain states by injection of current pulses in a magnetic wire with out-of-plane magnetization. J Appl Phys 105:07C106CrossRefGoogle Scholar
  56. 56.
    Mougin A, Cormier M, Adam JP, Metaxas PJ, Ferre J (2007) Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys Lett 78:57007ADSCrossRefGoogle Scholar
  57. 57.
    Ueda K et al. (2011) Current-induced domain wall motion in Co/Ni nano-wires with different Co and Ni thicknesses. J Phys Conf Ser 266:012110ADSCrossRefGoogle Scholar
  58. 58.
    Ohshima N et al. (2011) Real space observation of current-induced magnetic domain wall displacement in Co/Ni nano-wire by photoemission electron microscopy. J Phys Condens Matter 23:382202ADSCrossRefGoogle Scholar
  59. 59.
    Chiba D et al. (2010) Control of multiple magnetic domain walls by current in a Co/Ni nano-wire. Appl Phys Expr 3:073004ADSCrossRefGoogle Scholar
  60. 60.
    O’Brien L, Petit D, Zeng HT, Lewis ER, Sampaio J, Jausovec AV, Read DE, Cowburn RP (2009) Near-field interaction between domain walls in adjacent permalloy nanowires. Phys Rev Lett 103:077206ADSCrossRefGoogle Scholar
  61. 61.
    Ahn SM, Moon KW, Cho CG, Choe SB (2011) Control of domain wall pinning in ferromagnetic nanowires by magnetic stray fields. Nanotechnology 22:085201ADSCrossRefGoogle Scholar
  62. 62.
    Kuch W, Chelaru LI, Fukumoto K, Porrati F, Offi F, Kotsugi M, Kirschner J (2003) Layer-resolved imaging of magnetic interlayer coupling by domain-wall stray fields. Phys Rev B 67:214403ADSCrossRefGoogle Scholar
  63. 63.
    Yang S.-H. et al. (2015) Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets Nature Nanotech 10:221Google Scholar
  64. 64.
    Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC (2000) Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys Rev Lett 84:3149ADSCrossRefGoogle Scholar
  65. 65.
    Lee OJ et al (2009) Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin current pulse. Appl Phys Lett 95:012506ADSCrossRefGoogle Scholar
  66. 66.
    Papusoi C, Delaet B, Rodmacq B, Houssameddine D, Michel JP, Ebels U, Sousa RC, Buda-Prejbeanu L, Dieny B (2009) 100 ps precessional spin-transfer switching of a planar magnetic random access memory cell with perpendicular spin polarizer. Appl Phys Lett 95:072506ADSCrossRefGoogle Scholar
  67. 67.
    Liu H, Bedau D, Backes D, Kantine JA, Langer J, Kent AD (2010) Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl Phys Lett 97:242510ADSCrossRefGoogle Scholar
  68. 68.
    Rowlands GE et al (2011) Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl Phys Lett 98:102509ADSCrossRefGoogle Scholar
  69. 69.
    Amiri H et al (2011) Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl Phys Lett 98:112507ADSCrossRefGoogle Scholar
  70. 70.
    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H (2010) A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat Mater 9:721ADSCrossRefGoogle Scholar
  71. 71.
    Kammerer M et al (2011) Magnetic vortex core reversal by excitation of spin waves. Nat Comm 2:279ADSCrossRefGoogle Scholar
  72. 72.
    Landau L, Lifshits E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion 8:153MATHGoogle Scholar
  73. 73.
    Brown WF (1963) Micromagnetics. Interscience, New YorkMATHGoogle Scholar
  74. 74.
    Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443ADSCrossRefGoogle Scholar
  75. 75.
    Thiaville A, Nakatani Y, Miltat J, Suzuki Y (2005) Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys Lett 69:990ADSCrossRefGoogle Scholar
  76. 76.
    Tatara G, Kohno H (2004) Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys Rev Lett 92:086601ADSCrossRefGoogle Scholar
  77. 77.
    Zhang S, Li Z (2004) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93:127204ADSCrossRefGoogle Scholar
  78. 78.
    Tatara G (2007) Spin torque and force due to current for general spin textures. J Phys Soc Japan 76:54707ADSCrossRefGoogle Scholar
  79. 79.
    Barnes SE, Maekawa S. Theory of spin-transfer torque and domain wall motion in magnetic nanostructures. In: Maekawa S (ed) Concepts in spin electronics. Oxford University Press, OxfordGoogle Scholar
  80. 80.
    Tserkovnyak Y, Brataas A, Bauer GEW (2008) Theory of current-driven magnetization dynamics in inhomogeneous ferromagnets. J Magn Magn Mater 320:1282ADSCrossRefGoogle Scholar
  81. 81.
    Schryer NL, Walker LR (1974) The motion of 180° domain walls in uniform dc magnetic fields. J Appl Phys 45:5406ADSCrossRefGoogle Scholar
  82. 82.
    Schieback C, Kläui M, Nowak U, Rüdiger U, Nielaba P (2007) Numerical investigation of spin-torque using the Heisenberg model. Eur Phys J B 59:429ADSCrossRefMATHGoogle Scholar
  83. 83.
    Bryan MT, Schrefl T, Atkinson D, Allwood DA (2008) Magnetic domain wall propagation in nanowires under transverse magnetic fields. J Appl Phys 103:073906ADSCrossRefGoogle Scholar
  84. 84.
    Bryan MT, Schrefl T, Allwood DA (2010) Dependence of transverse domain wall dynamics on permalloy nanowire dimensions. IEEE Trans Magn 46:1135ADSCrossRefGoogle Scholar
  85. 85.
    Choi YS, Lee JY, Yoo MW, Lee KS, Guslienko KY, Kim SK (2009) Critical nucleation size of vortex core for domain wall transformation in soft magnetic thin film nanostrips. Phys Rev B 80:012402ADSCrossRefGoogle Scholar
  86. 86.
    Dean JS, Bryan MT, Allwood DA, Bance S, Bashir MA, Hrkac G (2009) Tailoring domain wall dynamics with uniaxial anisotropy in nanowires. IEEE Trans Magn 45:4067ADSCrossRefGoogle Scholar
  87. 87.
    Kim SK, Lee JY, Choi YS, Guslienko KY, Lee KS (2008) Underlying mechanism of domain-wall motions in soft magnetic thin-film nanostripes beyond the velocity breakdown regime. Appl Phys Lett 93:052503ADSCrossRefGoogle Scholar
  88. 88.
    Kunz A, Reiff SC (2008) Enhancing domain wall speed in nanowires with transverse magnetic fields. J Appl Phys 103:07D903Google Scholar
  89. 89.
    Breitbach E, Smith C, Kunz AJ (2009) Anti-vortex dynamics in magnetic nanostripes. J Appl Phys 103:07D502Google Scholar
  90. 90.
    Kunz A (2006) Simulating the maximum domain wall speed in a magnetic nanowire. IEEE Trans Magn 42:3219–3221ADSCrossRefGoogle Scholar
  91. 91.
    Kunz A (2006) Simulated domain wall dynamics in permalloy nanowires. J Appl Phys 99:08G107Google Scholar
  92. 92.
    Lee JY et al (2007) Dynamic transformations of the internal structure of a moving domain wall in magnetic nanostripes. Phys Rev B 76:184408ADSCrossRefGoogle Scholar
  93. 93.
    Martinez E, Lopez-Diaz L, Torres L, Tristan C, Alejos O (2007) Thermal effects in domain wall motion: Micromagnetic simulations and analytical model. Phys Rev B 75:174409ADSCrossRefGoogle Scholar
  94. 94.
    Nakatani Y, Thiaville A, Miltat J (2003) Faster magnetic walls in rough wires. Nat Mater 2:521ADSCrossRefGoogle Scholar
  95. 95.
    Zeisberger M, Mattheis R (2012) Magnetization reversal in magnetic nanostripes via Bloch wall formation. J Phys Condens Matter 24:024202ADSCrossRefGoogle Scholar
  96. 96.
    Berkov DV, Gorn NL MicroMagus: package for micromagnetic simulations. http://www.micromagus.de
  97. 97.
    Lu J, Wang XR (2010) Motion of transverse domain walls in thin magnetic nanostripes under transverse magnetic fields. J Appl Phys 107:083915ADSCrossRefGoogle Scholar
  98. 98.
    Ono T, Miyajima H, Shigeto K, Shinjo T (1998) Magnetization reversal in sub-micron magnetic wire studied by using giant magnetoresistance effect. Appl Phys Lett 72:1116ADSCrossRefGoogle Scholar
  99. 99.
    Ono T, Miyajima H, Shigeto K, Mibu K, Hosoito N, Shinjo T (1999) Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 284:468ADSCrossRefGoogle Scholar
  100. 100.
    Atkinson D, Allwood DA, Xiong G, Cooke MD, Faulkner CC, Cowburn RP (2003) Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nat Mater 2:85ADSCrossRefGoogle Scholar
  101. 101.
    Beach GSD, Nistor C, Knutson C, Tsoi M, Erskine JL (2005) Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nat Mater 4:741ADSCrossRefGoogle Scholar
  102. 102.
    Yang J, Nistor C, Beach GSD, Erskine JL (2008) Magnetic domain-wall velocity oscillations in permalloy nanowires. Phys Rev B 77:014413ADSCrossRefGoogle Scholar
  103. 103.
    Hayashi M, Thomas L, Rettner C, Moriya R, Parkin SSP (2007) Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nat Phys 3:21CrossRefGoogle Scholar
  104. 104.
    Hayashi M, Thomas L, Rettner C, Moriya R, Parkin SSP (2008) Real time observation of the field driven periodic transformation of domain walls in Permalloy nanowires at the Larmor frequency and its first harmonic. Appl Phys Lett 92:112510ADSCrossRefGoogle Scholar
  105. 105.
    Glathe S, Mattheis R, Berkov DV (2008) Direct observation and control of the Walker breakdown process during a field driven domain wall motion. Appl Phys Lett 93:072508ADSCrossRefGoogle Scholar
  106. 106.
    Glathe S, Berkov I, Mikolajick T, Mattheis R (2008) Experimental study of domain wall motion in long nanostrips under the influence of a transverse field. Appl Phys Lett 93:162505ADSCrossRefGoogle Scholar
  107. 107.
    Weerts K, Van Roy W, Borghs G, Lagae L (2010) Suppression of complex domain wall behaviour in Ni80Fe20 nanowires by oscillating magnetic fields. Appl Phys Lett 96:062502ADSCrossRefGoogle Scholar
  108. 108.
    Lewis ER, Petit D, O’Brien L, Fernandez-Pacheco A, Sampaio J, Jausovec AV, Zeng HT, Read DE, Cowburn RP (2010) Fast domain wall motion in magnetic comb structures. Nat Mater 9:980ADSCrossRefGoogle Scholar
  109. 109.
    Glathe S, Zeisberger M, Hübner U, Mattheis R, Berkov DV (2010) Splitting of a moving transverse domain wall in a magnetic nanostripe in a transverse field. Phys Rev B 81:020412(R)ADSCrossRefGoogle Scholar
  110. 110.
    Zinoni C, Vanhaverbeke A, Eib P, Salis G, Allenspach R (2011) Beyond the compact magnetic domain wall. Phys Rev Lett 107:207204ADSCrossRefGoogle Scholar
  111. 111.
    Hayashi M, Kasai S, Mitani S (2010) Time resolved inductive detection of domain wall dynamics in magnetic nanowires. App Phys Express 3:113004ADSCrossRefGoogle Scholar
  112. 112.
    Moriya R, Hayashi M, Thomas L, Rettner C, Parkin SSP (2010) Dependence of field driven domain wall velocity on cross-sectional area in Ni65Fe20Co15 nanowire. Appl Phys Lett 97:142506ADSCrossRefGoogle Scholar
  113. 113.
    Jiang X, Thomas L, Moriya R, Hayashi M, Bergman B, Rettner C, Parkin SSP (2010) Enhanced stochasticity of domain wall motion in magnetic racetracks due to dynamic pinning. Nat Commun 1:25ADSCrossRefGoogle Scholar
  114. 114.
    Kondou K, Ohshima N, Kasai S, Nakatani Y, Ono T (2008) Single shot detection of the magnetic domain wall motion by using tunnel magnetoresistance effect. Appl Phys Express 1:061302ADSCrossRefGoogle Scholar
  115. 115.
    Rhensius J, Heyne L, Backes D, Krzyk S, Heyderman LJ, Joly L, Nolting F, Kläui M (2010) Imaging of domain wall inertia in permalloy half-ring nanowires by time-resolved photoemission electron microscopy. Phys Rev Lett 104:067201ADSCrossRefGoogle Scholar
  116. 116.
    Kim J-S, Kläui M (2014) Magnetic device switchable by magnetic domain wall motion and method of operating the device. Patent EP2747086 A1Google Scholar
  117. 117.
    Seo S M et al. (2007) Effect of shape anisotropy on threshold current density for current-induced domain wall motion. Appl Phys Lett 90:252508ADSCrossRefGoogle Scholar
  118. 118.
    Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K, Shinjo T (2004) Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys Rev Lett 92:077205ADSCrossRefGoogle Scholar
  119. 119.
    Kläui M, Vaz CAF, Bland JAC, Wernsdorfer W, Faini G, Cambril E, Heyderman LJ, Nolting F, Rüdiger U (2005) Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys Rev Lett 94:106601ADSCrossRefGoogle Scholar
  120. 120.
    Meier G et al (2007) Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys Rev Lett 98:187202ADSCrossRefGoogle Scholar
  121. 121.
    Marrows H (2005) Spin-polarised currents and magnetic domain walls. Adv Phys 54:585ADSCrossRefGoogle Scholar
  122. 122.
    Beach GSD, Knutson C, Nistor C, Tsoi M, Erskine JL (2007) Nonlinear domain-wall velocity enhancement by spin-polarized electric current. Phys Rev Lett 97:057203ADSCrossRefGoogle Scholar
  123. 123.
    Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy YB, Parkin SSP (2007) Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys Rev Lett 98:037204ADSCrossRefGoogle Scholar
  124. 124.
    Jubert PO, Kläui M, Bischof A, Rüdiger U, Allenspach R (2006) Velocity of vortex walls moved by current. J Appl Phys 99:08G523CrossRefGoogle Scholar
  125. 125.
    Heyne L et al (2008) Relationship between nonadiabaticity and damping in permalloy studied by current induced spin structure transformations. Phys Rev Lett 100:066603ADSCrossRefGoogle Scholar
  126. 126.
    Kläui M et al (2009) Concepts for domain wall motion in nanoscale ferromagnetic elements due to spin torque and in particular oersted fields. J Magn 14(2):53CrossRefGoogle Scholar
  127. 127.
    Fukami S, Suzuki T, Ohshima N, Nagahara K, Ishiwata N (2008) Intrinsic threshold current density of domain wall motion in nanostrips with perpendicular magnetic anisotropy for use in low-write-current mrams. IEEE Trans Magn 44:2539ADSCrossRefGoogle Scholar
  128. 128.
    Suzuki T, Fukami S, Ohshima N, Nagahara K, Ishiwata N (2008) Analysis of current-driven domain wall motion from pinning sites in nanostrips with perpendicular magnetic anisotropy. J Appl Phys 103:113913ADSCrossRefGoogle Scholar
  129. 129.
    Fukami S, Suzuki T, Ohshima N, Nagahara K, Ishiwata N (2008) Micromagnetic analysis of current driven domain wall motion in nanostrips with perpendicular magnetic anisotropy. J Appl Phys 103:07E718CrossRefGoogle Scholar
  130. 130.
    Fukami S, Nakatani Y, Suzuki T, Nagahara K, Ohshima N, Ishiwata N (2009) Relation between critical current of domain wall motion and wire dimension in perpendicularly magnetized Co/Ni nanowires. Appl Phys Lett 95:232504ADSCrossRefGoogle Scholar
  131. 131.
    Martinez E, Lopez-Diaz L, Alejos O, Torres L (2009) Thermally activated domain wall depinning in thin strips with high perpendicular magnetocrystalline anisotropy. J Appl Phys 106:043914ADSCrossRefGoogle Scholar
  132. 132.
    Garcia-Sanchez F, Szambolics H, Mihai AP, Vila L, Marty A, Attan JP, Toussaint JC, Buda-Prejbeanu LD (2010) Effect of crystalline defects on domain wall motion under field and current in nanowires with perpendicular magnetization. Phys Rev B 81:134408ADSCrossRefGoogle Scholar
  133. 133.
    Yan M, Kokay A, Gliga S, Hertel R (2010) Beating the walker limit with massless domain walls in cylindrical nanowires. Phys Rev Lett 104:057201ADSCrossRefGoogle Scholar
  134. 134.
    Tatara G, Entel P (2008) Calculation of current-induced torque from spin continuity equation. Phys Rev B 78:064429ADSCrossRefGoogle Scholar
  135. 135.
    Garate I, Gilmore K, Stiles MD, MacDonald AH (2009) Nonadiabatic spin-transfer torque in real materials. Phys Rev B 79:104416ADSCrossRefGoogle Scholar
  136. 136.
    Obata K, Tatara G (2008) Current-induced domain wall motion in Rashba spin-orbit system. Phys Rev B 77:214429ADSCrossRefGoogle Scholar
  137. 137.
    Lucassen ME, van Driel HJ, Morais Smith C, Duine RA (2009) Current-driven and field-driven domain walls at nonzero temperature. Phys Rev B 79:224411ADSCrossRefGoogle Scholar
  138. 138.
    Heinen J et al (2012) Determination of the spin torque non-adiabaticity in perpendicularly magnetized nanowires. J Phys Condens Matter 24:024220ADSCrossRefGoogle Scholar
  139. 139.
    Ravelosona D, Mangin S, Katine JA, Fullerton E, Terris BD (2007) Treshhold currents to move domain walls in film with perpendicular anisotropy. Appl Phys Lett 90:072508ADSCrossRefGoogle Scholar
  140. 140.
    Li S, Nakamura H, Kanazawa T, Liu X, Morisako A (2010) Current-Induced domain wall motion in TbFeCo wires with perpendicular magnetic anisotropy. IEEE Trans Magn 46:1695ADSCrossRefGoogle Scholar
  141. 141.
    Koyama T et al (2011) Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nat Mater 10:194ADSCrossRefGoogle Scholar
  142. 142.
    Suzuki T, Fukami S, Nagahara K, Ohshima N, Ishiwata N (2009) Evaluation of scalability for current-driven domain wall motion in a co/ni multilayer strip for memory applications. IEEE Trans Magn 45:3776ADSCrossRefGoogle Scholar
  143. 143.
    Tanigawa H, Koyama T, Yamada G, Chiba D, Kasai S, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T (2009) Domain wall motion induced by electric current in a perpendicularly magnetized Co/Ni nano-wire. Appl Phys Express 2:053002ADSCrossRefGoogle Scholar
  144. 144.
    Fukami S, Suzuki T, Nakatani Y, Ishiwata N, Yamanouchi M, Ikeda S, Kasai N, Ohno H (2011) Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire. Appl Phys Lett 98:082504ADSCrossRefGoogle Scholar
  145. 145.
    Lee JC, Kim KJ, Ryu J, Moon KW, Yun SJ, Gim GH, Lee KS, Shin KH, Lee HW, Choe SB (2011) Universality classes of magnetic domain wall motion. Phys Rev Lett 107:067201ADSCrossRefGoogle Scholar
  146. 146.
    Koyama T, Yamada G, Tanigawa H, Kasai S, Ohshima N, Fukami S, Ishiwata N, Nakatani Y, Ono T (2008) Control of domain wall position by electrical current in structured Co/Ni wire with perpendicular magnetic anisotropy. Appl Phys Express 1:101303ADSCrossRefGoogle Scholar
  147. 147.
    Moore TA, Miron IM, Gaudin G, Serret G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Bonfim M (2008) High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Appl Phys Lett 93:262504ADSCrossRefGoogle Scholar
  148. 148.
    Miron M (2009) Etude de l’interaction entre un courant polarisé en spin et une paroi de domaine magnétique dans des matériaux à aimantation perpendiculaire. PhD thesis, Université Joseph FourierGoogle Scholar
  149. 149.
    Miron M, Moore T, Szambolics H, Buda-Prejbeanu LD, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G (2011) Fast current-induced domain-wall motion controlled by the Rashba effect. Nat Mater 10:419ADSCrossRefGoogle Scholar
  150. 150.
    Koyama T, Chiba D, Ueda K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Ono T (2011) Magnetic field insensitivity of magnetic domain wall velocity induced by electrical current in Co/Ni nanowire. Appl Phys Lett 98:192509ADSCrossRefGoogle Scholar
  151. 151.
    Miron M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P (2010) Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater 9:230ADSGoogle Scholar
  152. 152.
    Ngo DT, Ikeda K, Awano H (2011) Direct observation of domain wall motion induced by low-current density in tbfeco wires. Appl Phys Express 4:093002ADSCrossRefGoogle Scholar
  153. 153.
    Miron M, Garello K, Gaudin G, Zermatten P, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P (2011) Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476:189ADSCrossRefGoogle Scholar
  154. 154.
    Kim K, Seo S, Ryu J, Lee K, Lee H (2012) Magnetization dynamics induced by in-plane currents in ultrathin magnetic nanostructures with Rashba spin-orbit coupling. Phys Rev B 85:180404ADSCrossRefGoogle Scholar
  155. 155.
    Liu H, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA (2012) Spin-torque switching with the giant spin hall effect of tantalum. Science 336:555ADSCrossRefGoogle Scholar
  156. 156.
    Ryu K-S, Thomas L, Yang S-H, Parkin SSP (2013) Chiral spin torque at magnetic domain walls. Nat Nanotech 8:527ADSCrossRefGoogle Scholar
  157. 157.
    Emori S, Bauer U, Ahn S-M, Martinez E, Beach GSD (2013) Current-driven dynamics of chiral ferromagnetic domain walls. Nat Mater 12:611ADSCrossRefGoogle Scholar
  158. 158.
    Lo Conte R, Hrabec A, Mihai AP, Schulz T, Noh S-J, Marrows CH, Moore TA, Kläui M (2014) Spin-orbit torque-driven magnetization switching and thermal effects studied in Ta/CoFeB/MgO nanowires. Appl Phys Lett 105:122404ADSCrossRefGoogle Scholar
  159. 159.
    Lo Conte R et al (2015) Role of B diffusion in the interfacial Dzyaloshinskii-Moriya interaction in Ta/Co20Fe60B20/MgO nanowires. Phys Rev B 91:014433ADSCrossRefGoogle Scholar
  160. 160.
    Haney PM, Lee H-W, Lee K-J, Stiles MD (2013) Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling. Phys Rev B 87:174411ADSCrossRefGoogle Scholar
  161. 161.
    Lee JY, Lee KS, Kim SK (2007) Remarkable enhancement of domain-wall velocity in magnetic nanostripes. Appl Phys Lett 91:122513ADSCrossRefGoogle Scholar
  162. 162.
    Vanhaverbeke A, Bischof A, Allenspach R (2008) Control of domain wall polarity by current pulses. Phys Rev Lett 101:107202ADSCrossRefGoogle Scholar
  163. 163.
    Rebei A, Mryasov O (2006) Dynamics of a trapped domain wall in a spin-valve nanostructure with current perpendicular to the plane. Phys Rev B. 74:014412ADSCrossRefGoogle Scholar
  164. 164.
    Khvalkovskiy V, Zvezdin KA, Gorbunov YV, Cros V, Grollier J, Fert A, Zvezdin AK (2009) High domain wall velocities due to spin currents perpendicular to the plane. Phys Rev Lett 102:067206ADSCrossRefGoogle Scholar
  165. 165.
    Boone CT, Katine JA, Carey M, Childress JR, Cheng X, Krivorotov IN (2010) Rapid domain wall motion in permalloy nanowires excited by a spin-polarized current applied perpendicular to the nanowire. Phys Rev Lett 104:097203ADSCrossRefGoogle Scholar
  166. 166.
    Boone CT, Krivorotov IN (2010) Magnetic domain wall pumping by spin transfer torque. Phys Rev Lett 104:167205ADSCrossRefGoogle Scholar
  167. 167.
    Chanthbouala A et al (2011) Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nat Phys 7:626CrossRefGoogle Scholar
  168. 168.
    Lavrijsen R, Malinowski G, Franken JH, Kohlhepp JT, Swagten HJM, Koopmans B, Czapkiewicz M, Stobiecki T (2010) Reduced domain wall pinning in ultrathin Pt/Co100-xBx/Pt with perpendicular magnetic anisotropy. Appl Phys Lett 96:022501ADSCrossRefGoogle Scholar
  169. 169.
    Gottwald M, Girod S, Andrieu S, Mangin S (2010) Tuneable perpendicular magnetic anisotropy in single crystal [Co/Ni](111) superlattices. IOP Conf Ser Mater Sci Eng 12:012018CrossRefGoogle Scholar
  170. 170.
    Hinzke D, Nowak U (2011) Domain wall motion by the magnonic spin seebeck effect. Phys Rev Lett 107:027205ADSCrossRefGoogle Scholar
  171. 171.
    Franken JH, Möhrke P, Kläui M, Rhensius J, Heyderman LJ, Thiele J-U, Swagten HJM, Gibson UJ, Rüdiger U (2009) Effects of combined current injection and laser irradiation on Permalloy microwire switching. Appl Phys Lett 95:212502ADSCrossRefGoogle Scholar
  172. 172.
    Möhrke P, Rhensius J, Thiele JU, Heyderman LJ, Kläui M (2010) Tailoring laser-induced domain wall pinning. Solid State Commun 150:489ADSCrossRefGoogle Scholar
  173. 173.
    Uchida K, Takahashi S, Ieda J, Harii K, Ikeda K, Koshibae W, Maekawa S, Saitoh E (2009) Phenomenological analysis for spin-seebeck effect in metallic magnets. J Appl Phys 105:07C908CrossRefGoogle Scholar
  174. 174.
    Jiang W et al (2013) Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys Rev Lett 110:177202ADSCrossRefGoogle Scholar
  175. 175.
    You Y (2008) Another method for domain wall movement by a nonuniform transverse magnetic field. Appl Phys Lett 92:152507ADSCrossRefGoogle Scholar
  176. 176.
    You Y (2008) Equation of motion for a domain wall movement under a nonuniform transverse magnetic field. Appl Phys Lett 92:192514ADSCrossRefGoogle Scholar
  177. 177.
    Johnson M, Silsbee RH (1985) Equation of motion for a domain wall movement under a nonuniform transverse magnetic field. Phys Rev Lett 55:1790ADSCrossRefGoogle Scholar
  178. 178.
    Kimura T, Otani Y, Hamrle J (2006) Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys Rev Lett 96:037201ADSCrossRefGoogle Scholar
  179. 179.
    Jedema FJ, Filip AT, van Wees B (2001) Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410:345ADSCrossRefGoogle Scholar
  180. 180.
    Ji Y, Hoffmann A, Jiang JS, Pearson JE, Bader SD (2007) Non-local spin injection in lateral spin valves. J Phys D Appl Phys 40:1280ADSCrossRefGoogle Scholar
  181. 181.
    Yang T, Kimura T, Laloe J-B, Otani Y (2008) Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching. Nat Phys 4:851CrossRefGoogle Scholar
  182. 182.
    Kimura T, Otani Y (2007) Domain wall nucleation assisted by nonlocal spin injection. J Phys D Appl Phys 40:1285ADSCrossRefGoogle Scholar
  183. 183.
    Ilgaz D et al (2010) Domain-wall depinning assisted by pure spin currents. Phys Rev Lett 105:076601ADSCrossRefGoogle Scholar
  184. 184.
    Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees B (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571ADSCrossRefGoogle Scholar
  185. 185.
    Han D-S, Kim S-K, Lee J-Y, Hermsoerfer SJ, Schutheiss H, Leven B, Hillebrands B (2009) Magnetic domain-wall motion by propagating spin waves. Appl Phys Lett 94:112502ADSCrossRefGoogle Scholar
  186. 186.
    Jamali M, Yang H, Lee K-J (2010) Spin wave assisted current induced magnetic domain wall motion. Appl Phys Lett 96:242501ADSCrossRefGoogle Scholar
  187. 187.
    Kim JS, Stärk M, Kläui M, Yoon J, You CY, Lopez-Diaz L, Martinez E (2012) Interaction between propagating spin waves and domain walls on a ferromagnetic nanowire. Phys Rev B 85:174428ADSCrossRefGoogle Scholar
  188. 188.
    Kimel V, Kirilyuk A, Usachev PA, Pisarev RV, Balbashow AM, Rasing T (2005) Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435:655ADSCrossRefGoogle Scholar
  189. 189.
    Bryan MT, Dean J, Allwood DA (2012) Dynamics of stress-induced domain wall motion. Phys Rev B 85:144411ADSCrossRefGoogle Scholar
  190. 190.
    Hockel JL, Bur A, Wu T, Wetzlar KP, Carman GP (2012) Electric field induced magnetization rotation in patterned Ni ring/Pb(Mg1/3Nb2/3)O3](1–0.32)-[PbTiO3]0.32 heterostructures. Appl Phys Lett 100:022401ADSCrossRefGoogle Scholar
  191. 191.
    Finizio S et al (2014) Magnetic anisotropy engineering in thin film ni nanostructures by magnetoelastic coupling. Phys Rev Appl 1:021001ADSCrossRefGoogle Scholar
  192. 192.
    Lavrijsen R, Lee J-H, Fernandez-Pacheco A, Petit DC, Mansell R, Cowburn RP (2013) Magnetic ratchet for three-dimensional spintronic memory and logic. Nature 493:647ADSCrossRefGoogle Scholar
  193. 193.
    Malozemoff P, Slonczewski JC (1979) Magnetic domain walls in bubble materials. Academic, New YorkGoogle Scholar
  194. 194.
    Ilgaz D, Kläui M, Heyne L, Boulle O, Zinser F, Krzyk S, Fonin M, Rüdiger U, Backes D, Heyderman LJ (2008) Selective domain wall depinning by localized Oersted fields and Joule heating. Appl Phys Lett 93:132503ADSCrossRefGoogle Scholar
  195. 195.
    Ha S-S, You C-Y (2007) Validity of the analytic expression for the temperature of Joule heated nano-wire. J Magn 12:7CrossRefGoogle Scholar
  196. 196.
    Allwood DA, Gang X, Cooke MD, Faulkner CC, Atkinson D, Vernier N, Cowburn RP (2002) Submicrometer ferromagnetic not gate and shift register. Science 296:2003ADSCrossRefGoogle Scholar
  197. 197.
    Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309:1688ADSCrossRefGoogle Scholar
  198. 198.
    Diegel M, Glathe S, Mattheis R, Scherzinger M, Halder E (2009) A new four bit magnetic domain wall based multiturn counter. IEEE Trans Magn 45:3792ADSCrossRefGoogle Scholar
  199. 199.
    Diegel M, Mattheis R, Halder E (2004) 360° Domain wall investigation for sensor applications. IEEE Trans Magn 40:2655ADSCrossRefGoogle Scholar
  200. 200.
    Diegel M, Mattheis R, Halder E (2007) Multiturn counter using movement and storage of 180° magnetic domain walls. Sensor Lett 5:118CrossRefGoogle Scholar
  201. 201.
    The Novotechnik RSM 2800 sensor on www.novotechnik.de/en/products/rotary-sensors/
  202. 202.
    Mattheis R, Glathe S, Diegel M, Huebner U (2012) Concepts and steps for the realization of a new domain wall based GMR nanowire device: from the available 24 multiturn counter to a 212 turn counter. J Appl Phys 111:113920ADSCrossRefGoogle Scholar
  203. 203.
    Allwood A, Gang X, Cowburn RP (2004) Domain wall diodes in ferromagnetic planar nanowires. Appl Phys Lett 85:2848ADSCrossRefGoogle Scholar
  204. 204.
    Bryan MT, Schrefl T, Allwood DA (2007) Symmetric and asymmetric domain wall diodes in magnetic nanowires. Appl Phys Lett 91:142502ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Michael Foerster
    • 1
  • O. Boulle
    • 2
  • S. Esefelder
    • 3
  • R. Mattheis
    • 3
  • Mathias Kläui
    • 1
  1. 1.Institute of PhysicsJohannes Gutenberg-University MainzMainzGermany
  2. 2.Laboratoire SpinTecCEAGrenobleFrance
  3. 3.Leibniz Institute of Photonic TechnologyJenaGermany

Personalised recommendations