Advertisement

Identifying Insect Protein Receptors Using an Insecticidal Spider Toxin

  • Mireya Cordero
  • M. Anwar Hossain
  • Nayely Espinoza
  • Veronica Obregon
  • Mariel Roman
  • Samantha Navarro
  • Laura Lina
  • Gerardo Corzo
  • Elba Villegas
Living reference work entry
Part of the Toxinology book series (TOXI)

Abstract

The insecticidal spider toxin PaluIT1 was used to identify potential protein receptors in lepidopteran larvae. PaluIT1 was reacted with both biotin-N-hydroxy-succinimide (BHS) and fluorescein isothiocyanate (FITC) to obtain biotinylated and fluorescent probes, respectively. BHS and FITC reacted either to the N-terminal of the residue Ala1 or to the ε-amine of the Lys8 residue of PaluIT1; therefore, mono- and di-labeled products were obtained. The mono-labeled fluorescent probes were lethal to pest larvae species such as Galleria mellonella, Spodoptera frugiperda, Spodoptera litura, and Diatraea magnifactella with LD50 values from 10 to 33 μ g/g of larvae. In addition, rabbit primary antibodies against PaluIT1 were made for histochemical and immunochemical assays in order to identify protein receptors of PaluIT1 in lepidopteran larvae. Western blot assays using PaluIT1, PaluIT1-biotin, PaluIT1-FITC, and antibodies against PaluIT1 helped to identify insect protein receptors from ganglia cord homogenates. Protein bands of 250–260 kDa in S. frugiperda, G. mellonella, and D. magnifactella and above 207 kDa in S. litura were observed suggesting a Nav α-subunit protein receptor in these lepidopteran species. In addition, protein bands of 80 kDa in S. frugiperda and D. magnifactella and of 75 and 80 kDa in G. mellonella were also identified. A proteomic analysis of those protein bands suggested that PaluIT1 interacts with the cutworm larvae voltage-gated sodium channel, hexamerin and arylphorin.

Keywords

Insecticidal Receptors Nav PaluIT1 Hexamerin Arylphorin 

Notes

Acknowledgments

This work was financed by grants from Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) number IN204415 and from SEP-CONACyT number 240616 to GC and CONACYT CB 106949 to EV.

References

  1. Beresford PJ, Basinski-Gray JM, Chiu JK, Chadwick JS, Aston WP. Characterization of hemolytic and cytotoxic Gallysins: a relationship with arylphorins. Dev Comp Immunol. 1997;21:253–66.CrossRefPubMedGoogle Scholar
  2. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMedGoogle Scholar
  3. Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev. 2005;57:397–409.CrossRefPubMedGoogle Scholar
  4. Corzo G, Escoubas P, Stankiewicz M, Pelhate M, Kristensen CP, Nakajima T. Isolation, synthesis and pharmacological characterization of delta-palutoxins IT, novel insecticidal toxins from the spider Paracoelotes luctuosus. Eur J Biochem. 2000;267:5783–95.CrossRefPubMedGoogle Scholar
  5. de Lima ME, Couraud F, Lapied B, Pelhate M, Ribeiro Diniz C, Rochat H. Photoaffinity labeling of scorpion toxin receptors associated with insect synaptosomal Na+ channels. Biochem Biophys Res Commun. 1988;151:187–92.CrossRefPubMedGoogle Scholar
  6. Dong K. Insect sodium channels and insecticide resistance. Invert Neurosci. 2007;7:17–30.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Eitan M, Fowler E, Herrmann R, Duval A, Pelhate M, Zlotkin E. A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. Biochemistry. 1990;29:5941–7.CrossRefPubMedGoogle Scholar
  8. Elazar M, Levi R, Zlotkin E. Targeting of an expressed neurotoxin by its recombinant baculovirus. J Exp Biol. 2001;204:2637–45.PubMedGoogle Scholar
  9. Escoubas P, Palma MF, Nakajima T. A microinjection technique using Drosophila melanogaster for bioassay-guided isolation of neurotoxins in arthropod venoms. Toxicon. 1995;33:1549–55.CrossRefPubMedGoogle Scholar
  10. Ferrat G, Bosmans F, Tytgat J, Pimentel C, Chagot B, Gilles N, Nakajima T, Darbon H, Corzo G. Solution structure of two insect-specific spider toxins and their pharmacological interaction with the insect voltage-gated Na+ channel. Proteins. 2005;59:368–79.CrossRefPubMedGoogle Scholar
  11. Gordon D. A new approach to insect-pest control – combination of neurotoxins interacting with voltage sensitive sodium channels to increase selectivity and specificity. Invert Neurosci. 1997;3:103–16.CrossRefPubMedGoogle Scholar
  12. Gordon D, Merrick D, Auld V, Dunn R, Goldin AL, Davidson N, Catterall WA. Tissue-specific expression of the RI and RII sodium channel subtypes. Proc Natl Acad Sci U S A. 1987;84:8682–6.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Gordon D, Merrick D, Wollner DA, Catterall WA. Biochemical properties of sodium channels in a wide range of excitable tissues studied with site-directed antibodies. Biochemistry. 1988;27:7032–8.CrossRefPubMedGoogle Scholar
  14. Gordon D, Moskowitz H, Zlotkin E. Sodium channel polypeptides in central nervous systems of various insects identified with site directed antibodies. Biochim Biophys Acta. 1990;1026:80–6.CrossRefPubMedGoogle Scholar
  15. Gordon D, Moskowitz H, Eitan M, Warner C, Catterall WA, Zlotkin E. Localization of receptor sites for insect-selective toxins on sodium channels by site-directed antibodies. Biochemistry. 1992;31:7622–8.CrossRefPubMedGoogle Scholar
  16. Haunerland NH, Bowers WS. Binding of insecticides to lipophorin and arylphorin, two hemolymph proteins of Heliothis zea. Arch Insect Biochem Physiol. 1986;3:87–96.CrossRefGoogle Scholar
  17. Lina-Garcia L, Obregon Barboza V, Sosa Pliego Y, Acevedo-Aviles M, Martinez Monrroy A, Trejo-Loyo A, Diaz-Corro L. Establecimiento de la cría de (Galleria magnifactella) en condiciones de laboratorio. XXXIII Congreso Nacional de Control Biológico, Uruapan; 2010.Google Scholar
  18. Nicholson GM. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon. 2007;49:490–512.CrossRefPubMedGoogle Scholar
  19. Park Y, Taylor MF, Feyereisen R. Voltage-gated sodium channel genes hscp and hDSC1 of Heliothis virescens F. genomic organization. Insect Mol Biol. 1999;8:161–70.CrossRefPubMedGoogle Scholar
  20. Poopathi S, Thirugnanasambantham K, Mani C, Mary KA, Mary BA, Balagangadharan K. Hexamerin a novel protein associated with Bacillus sphaericus resistance in Culex quinquefasciatus. Appl Biochem Biotechnol. 2014;172:2299–307.CrossRefPubMedGoogle Scholar
  21. Scherfer C, Karlsson C, Loseva O, Bidla G, Goto A, Havemann J, Dushay MS, Theopold U. Isolation and characterization of hemolymph clotting factors in Drosophila melanogaster by a pullout method. Curr Biol. 2004;14:625–9.CrossRefPubMedGoogle Scholar
  22. Singh P. Artificial diets for insects, mites, and spiders. New York: IFI/Plenum; 1977.CrossRefGoogle Scholar
  23. Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol. 2003;33:563–77.CrossRefPubMedGoogle Scholar
  24. Sonoda S, Ashfaq M, Tsumuki H. Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamondback moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch Insect Biochem Physiol. 2006a;62:80–90.CrossRefPubMedGoogle Scholar
  25. Sonoda S, Ashfaq M, Tsumuki H. Genomic organization and developmental expression of glutathione S-transferase genes of the diamondback moth, Plutella xylostella. J Insect Sci. 2006b;6:1–9.CrossRefPubMedGoogle Scholar
  26. Trainer VL, McPhee JC, Boutelet-Bochan H, Baker C, Scheuer T, Babin D, Demoute JP, Guedin D, Catterall WA. High affinity binding of pyrethroids to the alpha subunit of brain sodium channels. Mol Pharmacol. 1997;51:651–7.PubMedGoogle Scholar
  27. Zlotkin E, Rochat H, Kopeyan C, Miranda F, Lissitzky S. Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie. 1971;53:1073–8.CrossRefPubMedGoogle Scholar
  28. Zlotkin E, Eitan M, Bindokas VP, Adams ME, Moyer M, Burkhart W, Fowler E. Functional duality and structural uniqueness of depressant insect-selective neurotoxins. Biochemistry. 1991;30:4814–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mireya Cordero
    • 1
  • M. Anwar Hossain
    • 2
  • Nayely Espinoza
    • 1
  • Veronica Obregon
    • 1
  • Mariel Roman
    • 1
  • Samantha Navarro
    • 1
  • Laura Lina
    • 1
  • Gerardo Corzo
    • 3
  • Elba Villegas
    • 1
  1. 1.Laboratorio de Estructura-Función e Ingeniería de Proteínas, Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  2. 2.Department of MicrobiologyUniversity of DhakaDhakaBangladesh
  3. 3.Departamento de Medicina Molecular y BioprocesosInstituto de Biotecnología UNAMCuernavacaMexico

Personalised recommendations