Advertisement

Antimicrobial, Insecticides, Analgesics, and Hyaluronidases from the Venom Glands of Brachypelma Spiders

  • Herlinda Clement
  • Guillermo Barraza
  • Estefania Herrera
  • Francia García
  • Elia Diego-García
  • Elba Villegas
  • Gerardo Corzo
Living reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Mexico is a rich country in biological diversity; among them, the mygalomorph (also called the orthognatha) spider species of the genus Brachypelma contain in their poisonous glands a great variety of biomolecules that can have benefits in agriculture and medicine. Species of this genus have been studied at the Institute of Biotechnology (IBt-UNAM) and the Biotechnology Research Center (CeiB-UAEM) in Cuernavaca, Morelos, in order to detect venom components with biotechnological applications. This chapter addresses the advances of research on the venom components from species of the genus BrachypelmaB. smithi, B. albiceps, B. verdezi and B. vagans – which were chromatographically separated and biochemically analyzed, searching for antimicrobial, insecticidal, analgesic, and enzymatic activities. Although Brachypelma venoms contain similar types of molecules, their minor differences could be important for a gain in stability and function. The primary structures of the most relevant molecules found in those four species of Brachypelma are described and reported.

Keywords

Acyl-polyamines Peptides Enzymes Analgesic Insecticidal 

References

  1. Ardisson-Araujo DM, Morgado Fda S, Schwartz EF, Corzo G, Ribeiro BM. A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection. PLoS One. 2013;8:e84404.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Cevallos MA, Navarro-Duque C, Varela-Julia M, Alagon AC. Molecular mass determination and assay of venom hyaluronidases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Toxicon. 1992;30:925–30.CrossRefPubMedGoogle Scholar
  3. Chan TK, Geren CR, Howell DE, Odell GV. Adenosine triphosphate in tarantula spider venoms and its synergistic effect with the venom toxin. Toxicon. 1975;13:61–6.CrossRefPubMedGoogle Scholar
  4. Chen JQ, Zhang YQ, Dai J, Luo ZM, Liang SP. Antinociceptive effects of intrathecally administered huwentoxin-I, a selective N-type calcium channel blocker, in the formalin test in conscious rats. Toxicon. 2005;45:15–20.CrossRefPubMedGoogle Scholar
  5. Clement H. Purificación y caracterización de hialuronidasa del veneno de Brachypelma vagans, una tarántula mexicana, y comparación con otras posibles actividades enzimáticas del veneno de algunas Scolopendra sp. Centro de Investigaciones en Biotecnología. Cuernavaca, Morelos: Universidad Autónoma del Estado de Morelos; 2003Google Scholar
  6. Clement H, Olvera A, Rodriguez M, Zamudio F, Palomares LA, Possani LD, Odell GV, Alagon A, Sanchez-Lopez R. Identification, cDNA cloning and heterologous expression of a hyaluronidase from the tarantula Brachypelma vagans venom. Toxicon. 2012;60:1223–7.CrossRefPubMedGoogle Scholar
  7. Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem. 2002;277:23627–37.CrossRefPubMedGoogle Scholar
  8. Corzo G, Diego-Garcia E, Clement H, Peigneur S, Odell G, Tytgat J, Possani LD, Alagon A. An insecticidal peptide from the theraphosid Brachypelma smithi spider venom reveals common molecular features among spider species from different genera. Peptides. 2008;29:1901–8.CrossRefPubMedGoogle Scholar
  9. Corzo G, Bernard C, Clement H, Villegas E, Bosmans F, Tytgat J, Possani LD, Darbon H, Alagon A. Insecticidal peptides from the theraphosid spider Brachypelma albiceps: an NMR-based model of Ba. BBA Proteins Proteomics. 2009;1794:1190–6.CrossRefPubMedGoogle Scholar
  10. Criscuolo F, Font-Sala C, Bouillaud F, Poulin N, Trabalon M. Increased ROS production: a component of the longevity equation in the male mygalomorph, Brachypelma albopilosa. PLoS One. 2010;5:e13104. doi:10.1371/journal.pone.0013104.Google Scholar
  11. Escoubas P, Rash L. Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon. 2004;43:555–74.CrossRefPubMedGoogle Scholar
  12. Escoubas P, Diochot S, Corzo G. Structure and pharmacology of spider venom neurotoxins. Biochimie. 2000;82:893–907.CrossRefPubMedGoogle Scholar
  13. Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep. 2007;24:145–61.CrossRefPubMedGoogle Scholar
  14. García F. Caracterización química de moléculas antimicrobianas provenientes del veneno de arácnidos y su efecto microbicida en presencia antibióticos, Instituto de Biotecnología. Cuernavaca, Morelos: Universidad Nacional Autonoma de Mexico; 2010.Google Scholar
  15. Garcia F, Villegas E, Espino-Solis GP, Rodriguez A, Paniagua-Solis JF, Sandoval-Lopez G, Possani LD, Corzo G. Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. J Antibiot. 2013;66:3–10.CrossRefPubMedGoogle Scholar
  16. Gentz MC, Jones A, Clement H, King GF. Comparison of the peptidome and insecticidal activity of venom from a taxonomically diverse group of theraphosid spiders. Toxicon. 2009;53:496–502.CrossRefPubMedGoogle Scholar
  17. Kaiser II, Griffin PR, Aird SD, Hudiburg S, Shabanowitz J, Francis B, John TR, Hunt DF, Odell GV. Primary structures of two proteins from the venom of the Mexican red knee tarantula (Brachypelma smithi). Toxicon. 1994;32:1083–93.CrossRefPubMedGoogle Scholar
  18. Kreil G. Hyaluronidases-A group of neglected enzymes. Protein Sci. 1995;4:1666–9.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Locht A, Yáñex I, Vázquez M. Distribution and natural history of Mexican species of Brachypelma and Brachypelmides (Theraphosidae, Theraphosinae) with morphological evidence for their synonymy. J Arach. 1999;27:196–200.Google Scholar
  20. Locht A, Medina F, Rojo R, Vázquez I. Una nueva especie de Tarántula del género Aphonopelma Pocock 1901 (Araneae, Theraphosidae, Theraphosinae) de México con notas sobre el Género Brachypelma Simon 1891. Bol Soc Entomol Aragon. 2005;37:105–8.Google Scholar
  21. Machkour-M’Rabet S, Henaut Y, Winterton P, Rojo R. A case of zootherapy with the tarantula Brachypelma vagans Ausserer, 1875 in traditional medicine of the Chol Mayan ethnic group in Mexico. J Ethnobiol Ethnomed. 2011;7:12.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, Voilley N, Blondeau N, Escoubas P, Gelot A, Cupo A, Zimmer A, Zimmer AM, Eschalier A, Lazdunski M. A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci. 2007;10:943–5.CrossRefPubMedGoogle Scholar
  23. Menzel E, Farr C. Hyaluronidases and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett. 1998;131:3–11.CrossRefPubMedGoogle Scholar
  24. Odell GV, Fenton AW, Ownby CL, Doss MP, Schmidt JO. The role of venom citrate. Toxicon. 1999;37:407–9.CrossRefPubMedGoogle Scholar
  25. Park SP, Kim BM, Koo JY, Cho H, Lee CH, Kim M, Na HS, Oh U. A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain. 2008;137:208–17.CrossRefPubMedGoogle Scholar
  26. Platnick, NI. The world spider catalog, version 14.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html doi:10.5531/db.iz.0001. Available from: http://research.amnh.org/entomology/spiders/catalog/index.html (2014).
  27. Schanbacher FL, Lee CK, Hall JE, Wilson IB, Howell DE, Odell GV. Composition and properties of tarantula Dugesiella hentzi (Girard) venom. Toxicon. 1973;11:21–9.CrossRefPubMedGoogle Scholar
  28. Schmalhofer WA, Calhoun J, Burrows R, Bailey T, Kohler MG, Weinglass AB, Kaczorowski GJ, Garcia ML, Koltzenburg M, Priest BT. ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol. 2008;74:1476–84.CrossRefPubMedGoogle Scholar
  29. Shu Q, Huang R, Liang S. Assignment of the disulfide bonds of huwentoxin-II by Edman degradation sequencing and stepwise thiol modification. Eur J Biochem. 2001;268:2301–7.CrossRefPubMedGoogle Scholar
  30. Souza AH, Ferreira J, Cordeiro Mdo N, Vieira LB, De Castro CJ, Trevisan G, Reis H, Souza IA, Richardson M, Prado MA, Prado VF, Gomez MV. Analgesic effect in rodents of native and recombinant Ph alpha 1beta toxin, a high-voltage-activated calcium channel blocker isolated from armed spider venom. Pain. 2008;140:115–26.CrossRefPubMedGoogle Scholar
  31. Villegas E, Corzo G. Pore-forming peptides from spiders. Toxin Rev. 2005;24:345–57.CrossRefGoogle Scholar
  32. Wang X, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, Christie MJ, King GF. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol. 2000;7:505–13.CrossRefPubMedGoogle Scholar
  33. Zhu S, Darbon H, Dyason K, Verdonck F, Tytgat J. Evolutionary origin of inhibitor cystine knot peptides. FASEB J. 2003;17:1765–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Herlinda Clement
    • 1
  • Guillermo Barraza
    • 1
  • Estefania Herrera
    • 1
  • Francia García
    • 1
  • Elia Diego-García
    • 1
    • 2
  • Elba Villegas
    • 3
  • Gerardo Corzo
    • 1
  1. 1.Departamento de Medicina Molecular y BioprocesosInstituto de Biotecnología, UNAMCuernavacaMéxico
  2. 2.Laboratory of ToxicologyUniversity of Leuven (KUL)LeuvenBelgium
  3. 3.Laboratorio de Estructura-Función e Ingeniería de Proteínas, Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosCuernavacaMéxico

Personalised recommendations