Advertisement

Structural Diversity and Basic/Acidic Residue Balance of Active Cysteine-Rich Insecticidal Peptides from Spiders

  • Francia García
  • Elba Villegas
  • Ernesto Ortiz
  • Gerardo Corzo
Living reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Among different cysteine-rich peptides produced by poisonous animals, the venom of spiders contains the most diverse cystine scaffolds with insecticidal activities but with a similar compact beta-sheet three-dimensional structure containing a significant amount of basic residues balanced with anionic ones, which could be substantial for both diffusion to the their cell target and binding to their protein receptors. The different cationic and anionic balance of the insecticidal spider peptides also suggests that other binding sites in the insect receptors could exist. Compared to the market and commercial pesticides, a minute selection of insect pests has been tested with the insecticidal spider toxins; however, they have shown strong activity against selected species of lepidopteran, dipteran, blattodean, and orthopteran with the inconvenience that the insecticidal peptides exert their lethal activity once injected into the hemolymph of insects. The knowledge on the precise targeting of insect receptors by robust ligands from spider venoms could be useful for understanding the molecular basis of toxin selectivity at the receptor level. This could also lead to the design of more effective and safer pesticides. This chapter addresses most of the insecticidal spider peptides already discovered with reported lethal or paralytic activity.

Keywords

Insecticidal Peptides Cysteine-rich Toxin Spider 

Notes

Acknowledgments

This work was financed by grants from Dirección General de Asuntos del Personal Académico (DGAPA-UNAM), grant number IN204415, and SEP-CONACyT, grant number 240616.

References

  1. Adams ME, Herold EE, Venema VJ. Two classes of channel-specific toxins from funnel web spider venom. J Comp Physiol A. 1989;164:333–42.CrossRefPubMedGoogle Scholar
  2. Bende NS, Kang E, Herzig V, Bosmans F, Nicholson GM, Mobli M, King GF. The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels. Biochem Pharmacol. 2013;85:1542–54.CrossRefPubMedGoogle Scholar
  3. Branton WD, Kolton L, Jan YN, Jan LY. Neurotoxins from Plectreurys spider venom are potent presynaptic blockers in Drosophila. J Neurosci. 1987;7:4195–200.PubMedGoogle Scholar
  4. Branton WD, Rudnick MS, Zhou Y, Eccleston ED, Fields GB, Bowers LD. Fatty acylated toxin structure. Nature. 1993;365:496–7.CrossRefPubMedGoogle Scholar
  5. Brown MR, Sheumack DD, Tyler MI, Howden ME. Amino acid sequence of versutoxin, a lethal neurotoxin from the venom of the funnel-web spider Atrax versutus. Biochem J. 1988;250:401–5.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Coats JR. Insecticide mode of action. Academic; 2012.Google Scholar
  7. Corzo G, Escoubas P, Stankiewicz M, Pelhate M, Kristensen CP, Nakajima T. Isolation, synthesis and pharmacological characterization of delta-palutoxins IT, novel insecticidal toxins from the spider Paracoelotes luctuosus (Amaurobiidae). Eur J Biochem. 2000;267:5783–95.CrossRefPubMedGoogle Scholar
  8. Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem. 2002;277:23627–37.CrossRefPubMedGoogle Scholar
  9. Corzo G, Gilles N, Satake H, Villegas E, Dai L, Nakajima T, Haupt J. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel. FEBS Lett. 2003;547:43–50.CrossRefPubMedGoogle Scholar
  10. Corzo G, Escoubas P, Villegas E, Karbat I, Gordon D, Gurevitz M, Nakajima T, Gilles N. A spider toxin that induces a typical effect of scorpion alpha-toxins but competes with beta-toxins on binding to insect sodium channels. Biochemistry. 2005;44:1542–9.CrossRefPubMedGoogle Scholar
  11. Corzo G, Bernard C, Clement H, Villegas E, Bosmans F, Tytgat J, Possani LD, Darbon H, Alagon A. Insecticidal peptides from the theraposid spider Brachypelma albiceps: an NMR-based model of Ba2. Biochim Biophys Acta. 2009;1794:1190–6.CrossRefPubMedGoogle Scholar
  12. Down RE, Fitches EC, Wiles DP, Corti P, Bell HA, Gatehouse JA, Edwards JP. Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Manag Sci. 2006;62:77–85.CrossRefPubMedGoogle Scholar
  13. Eitan M, Fowler E, Herrmann R, Duval A, Pelhate M, Zlotkin E. A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. Biochemistry. 1990;29:5941–7.CrossRefPubMedGoogle Scholar
  14. Escoubas P, Célérier ML, Romi-Lebrun R, Nakajima T. Two novel peptide neurotoxins from the venom on the tarantula Lasiodora parahybana. Toxicon. 1997;35:805–6.CrossRefGoogle Scholar
  15. Fainzilber M, Kofman O, Zlotkin E, Gordon D. A new neurotoxin receptor site on sodium channels is identified by a conotoxin that affects sodium channel inactivation in molluscs and acts as an antagonist in rat brain. J Biol Chem. 1994;269:2574–80.PubMedGoogle Scholar
  16. Ferrat G, Bosmans F, Tytgat J, Pimentel C, Chagot B, Gilles N, Nakajima T, Darbon H, Corzo G. Solution structure of two insect-specific spider toxins and their pharmacological interaction with the insect voltage-gated Na+ channel. Proteins. 2005;59:368–79.CrossRefPubMedGoogle Scholar
  17. Figueiredo SG, Garcia ME, Valentim AC, Cordeiro MN, Diniz CR, Richardson M. Purification and amino acid sequence of the insecticidal neurotoxin Tx4(6–1) from the venom of the “armed” spider Phoneutria nigriventer (Keys). Toxicon. 1995;33:83–93.CrossRefPubMedGoogle Scholar
  18. Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AM, Edwards JP, Gatehouse JA. Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol. 2004;50:61–71.CrossRefPubMedGoogle Scholar
  19. Fletcher JI, Chapman BE, Mackay JP, Howden ME, King GF. The structure of versutoxin (delta-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure. 1997a;5:1525–35.CrossRefPubMedGoogle Scholar
  20. Fletcher JI, Smith R, O’Donoghue SI, Nilges M, Connor M, Howden ME, Christie MJ, King GF. The structure of a novel insecticidal neurotoxin, omega-atracotoxin- HV1, from the venom of an Australian funnel web spider. Nat Struct Biol. 1997b;4:559–66.CrossRefPubMedGoogle Scholar
  21. Froy O, Zilberberg N, Gordon D, Turkov M, Gilles N, Stankiewicz M, Pelhate M, Loret E, Oren DA, Shaanan B, Gurevitz M. The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. J Biol Chem. 1999;274:5769–76.CrossRefPubMedGoogle Scholar
  22. Hernandez-Campuzano B, Suarez R, Lina L, Hernandez V, Villegas E, Corzo G, Iturriaga G. Expression of a spider venom peptide in transgenic tobacco confers insect resistance. Toxicon. 2009;53:122–8.CrossRefPubMedGoogle Scholar
  23. Herzig V, Wood DL, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF. ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res. 2011;39:D653–7.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Johnson JH, Bloomquist JR, Krapcho KJ, Kral RMJ, Trovato R, Eppler KG, Morgan TK, DelMar EG. Novel insecticidal peptides from Tegenaria agrestis spider venom may have a direct effect on the insect central nervous system. Arch Insect Biochem Physiol. 1998;38:19–31.CrossRefPubMedGoogle Scholar
  25. Jung MP, Choi JY, Tao XY, Jin BR, Je HY, Park HH. Insecticidal activity of recombinant baculovirus expressing both spider toxin isolated from Araneus ventricosus and Bacillus thuringiensis crystal protein fused to a viral polyhedrin. Entomol Res. 2012;42:339–46.CrossRefGoogle Scholar
  26. King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol. 2013;58:475–96.CrossRefPubMedGoogle Scholar
  27. King GF, Tedford HW, Maggio F. Structure and function of insecticidal neurotoxins from Australian funnel-web spiders. J Toxicol Toxin Rev. 2002;21:359–89.CrossRefGoogle Scholar
  28. Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem. 2006;281:20983–92.CrossRefPubMedGoogle Scholar
  29. Krapcho KJ, Kral Jr RM, Vanwagenen BC, Eppler KG, Morgan TK. Characterization and cloning of insecticidal peptides from the primitive weaving spider Diguetia canities. Insect Biochem Mol Biol. 1995;25:991–1000.CrossRefPubMedGoogle Scholar
  30. Kuhn-Nentwig L, Schaller J, Nentwig W. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae:Ctenidae). Toxicon. 1994;32:287–302.CrossRefPubMedGoogle Scholar
  31. Kuhn-Nentwig L, Muller J, Schaller J, Walz A, Dathe M, Nentwig W. Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem. 2002;277:11208–16.CrossRefPubMedGoogle Scholar
  32. Kuhn-Nentwig L, Schaller J, Nentwig W. Biochemistry, toxicology and ecology of the venom of the spider Cupiennius salei (Ctenidae). Toxicon. 2004;43:543–53.CrossRefPubMedGoogle Scholar
  33. Leung HT, Branton WD, Phillips HS, Jan L, Byerly L. Spider toxins selectively block calcium currents in Drosophila. Neuron. 1989;3:767–72.CrossRefPubMedGoogle Scholar
  34. Little MJ, Wilson H, Zappia C, Cestele S, Tyler MI, Martin-Eauclaire MF, Gordon D, Nicholson GM. Delta-atracotoxins from Australian funnel-web spiders compete with scorpion alpha-toxin binding on both rat brain and insect sodium channels. FEBS Lett. 1998;439:246–52.CrossRefPubMedGoogle Scholar
  35. Maggio F, King GF. Role of the structurally disordered N- and C-terminal residues in the Janus-faced atracotoxins. Toxicon. 2002a;40:1355–61.CrossRefPubMedGoogle Scholar
  36. Maggio F, King GF. Scanning mutagenesis of a Janus-faced atracotoxin reveals a bipartite surface patch that is essential for neurotoxic function. J Biol Chem. 2002b;277:22806–13.CrossRefPubMedGoogle Scholar
  37. Martin MF, Garcia y Perez LG, el Ayeb M, Kopeyan C, Bechis G, Jover E, Rochat H. Purification and chemical and biological characterizations of seven toxins from the Mexican scorpion, Centruroides suffusus suffusus. J Biol Chem. 1987;262:4452–9.PubMedGoogle Scholar
  38. Oliveira LC, De Lima ME, Pimenta AM, Mansuelle P, Rochat H, Cordeiro MN, Richardson M, Figueiredo SG. PnTx4-3, a new insect toxin from Phoneutria nigriventer venom elicits the glutamate uptake inhibition exhibited by PhTx4 toxic fraction. Toxicon. 2003;42:793–800.CrossRefPubMedGoogle Scholar
  39. Quistad GB, Skinner WS. Isolation and sequencing of insecticidal peptides from the primitive hunting spider, Plectreurys tristis (Simon). J Biol Chem. 1994;269:11098–101.PubMedGoogle Scholar
  40. Quistad GB, Reuter CC, Skinner WS, Dennis PA, Suwanrumpha S, Fu EW. Paralytic and insecticidal toxins from the funnel web spider, Hololena curta. Toxicon. 1991;29:329–36.CrossRefPubMedGoogle Scholar
  41. Quistad GB, Dennis PA, Skinner WS. Insecticidal activity of spider (Araneae), centipede (Chilopoda), scorpion (Scorpionida), and snake (Serpentes) venoms. J Econ Entomol. 1992;85:33–9.CrossRefGoogle Scholar
  42. Sautiere P, Cestele S, Kopeyan C, Martinage A, Drobecq H, Doljansky Y, Gordon D. New toxins acting on sodium channels from the scorpion Leiurus quinquestriatus hebraeus suggest a clue to mammalian vs insect selectivity. Toxicon. 1998;36:1141–54.CrossRefPubMedGoogle Scholar
  43. Schalle J, Kampfer U, Schurch S, Kuhn-Nentwig L, Haeberli S, Nentwig W. CSTX-9, a toxic peptide from the spider Cupiennius salei: amino acid sequence, disulphide bridge pattern and comparison with other spider toxins containing the cystine knot structure. Cell Mol Life Sci. 2001;58:1538–45.CrossRefPubMedGoogle Scholar
  44. Sheumack DD, Claassens R, Whiteley NM, Howden ME. Complete amino acid sequence of a new type of lethal neurotoxin from the venom of the funnel-web spider Atrax robustus. FEBS Lett. 1985;181:154–6.CrossRefPubMedGoogle Scholar
  45. Shu Q, Liang SP. Purification and characterization of huwentoxin-II, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena. J Pept Res. 1999;53:486–91.CrossRefPubMedGoogle Scholar
  46. Shu Q, Lu SY, Gu XC, Liang SP. The structure of spider toxin huwentoxin-II with unique disulfide linkage: evidence for structural evolution. Protein Sci. 2002;11:245–52.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Skinner WS, Adams ME, Quistad GB, Kataoka H, Cesarin BJ, Enderlin FE, Schooley DA. Purification and characterization of two classes of neurotoxins from the funnel web spider, Agelenopsis aperta. J Biol Chem. 1989;264:2150–21505.PubMedGoogle Scholar
  48. Skinner WS, Dennis PA, Li JP, Quistad GB. Identification of insecticidal peptides from venom of the trap-door spider, Aptostichus schlingeri (Ctenizidae). Toxicon. 1992;30:1043–50.CrossRefPubMedGoogle Scholar
  49. Vassilevski AA, Fedorova IM, Maleeva EE, Korolkova YV, Efimova SS, Samsonova OV, Schagina LV, Feofanov AV, Magazanik LG, Grishin EV. Novel class of spider toxin: active principle from the yellow sac spider Cheiracanthium punctorium venom is a unique two-domain polypeptide. J Biol Chem. 2010;285:32293–302.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Wang X, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, Christie MJ, King GF. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol. 2000;7:505–13.CrossRefPubMedGoogle Scholar
  51. Wang XH, Connor M, Wilson D, Wilson HI, Nicholson GM, Smith R, Shaw D, Mackay JP, Alewood PF, Christie MJ, King GF. Discovery and structure of a potent and highly specific blocker of insect calcium channels. J Biol Chem. 2001;276:40306–12.CrossRefPubMedGoogle Scholar
  52. Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM. Spider-venom peptides as bioinsecticides. Toxins (Basel). 2012;4:191–227.CrossRefGoogle Scholar
  53. Wullschleger B, Kuhn-Nentwig L, Tromp J, Kampfer U, Schaller J, Schurch S, Nentwig W. CSTX-13, a highly synergistically acting two-chain neurotoxic enhancer in the venom of the spider Cupiennius salei (Ctenidae). Proc Natl Acad Sci U S A. 2004;101:11251–6.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Zlotkin E, Kadouri D, Gordon D, Pelhate M, Martin MF, Rochat H. An excitatory and a depressant insect toxin from scorpion venom both affect sodium conductance and possess a common binding site. Arch Biochem Biophys. 1985;240:877–87.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Francia García
    • 1
  • Elba Villegas
    • 2
  • Ernesto Ortiz
    • 1
  • Gerardo Corzo
    • 1
  1. 1.Departamento de Medicina Molecular y BioprocesosInstituto de Biotecnología, UNAMCuernavacaMexico
  2. 2.Laboratorio de Estructura-Función e Ingeniería de Proteínas, Centro de Investigación en BiotecnologíaUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations