Spider Transcriptomes from Venom Glands: Molecular Diversity of Ion Channel Toxins and Antimicrobial Peptide Transcripts

  • Elia Diego-García
  • Camila Takeno Cologna
  • Juliana Silva Cassoli
  • Gerardo Corzo
Living reference work entry
Part of the Toxinology book series (TOXI)


The technological transformations that expand our knowledge of molecular biology in the 1980s brought us various novel techniques and methods for gene isolation and characterization. Research groups from all over the world began publishing the first scientific reports concerning transcripts and genes of several spider species. Sophisticated techniques and methods for specific and random cDNA library screening and the discovery of several expressed sequence tags (ESTs) enabled transcriptome analysis, opening up new paths for investigation of poisonous and venomous animals and their venom components.

The transcriptomics allowed to report novel spider peptide toxin sequences, an important scientific advancement that arrived together with several new scientific protagonists interested in exploring novel venom compounds, such as proteomics. Even though the effort in the search and research of spider venom components, transcripts and genes, has been significant, it has been lower compared to the total number of molecules that is thought to be present in the spider venom glands according to a conservative estimate of >9 million bioactive peptides (ca. 45 thousand spider species with 200 components per venom).

This chapter addresses the transcriptome analysis in spider venom glands using Sanger and next-generation sequencing approaches. The emphasis is put on transcripts that encode for expressed peptide toxins, which affect ion channels and expressed peptide toxins, which act as antimicrobial agents. This manuscript aims to provide general information to strengthen the knowledge on the diversity of transcripts, gene families, and the research of expressed spider compounds derived from their venom glands.


Spider gene Spider transcriptome Spider toxin Antimicrobial peptides ICK motif Kunitz-type toxin 


  1. Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Voltage-gated ions channels and gating modifier toxins. Toxicon. 2007;49:124–41.CrossRefPubMedGoogle Scholar
  2. Chen J, Zhao L, Jiang L, Meng E, Zhang Y, Xiong X, Liang S. Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula Chilobrachys jingzhao venom gland. Toxicon. 2008a;52:794–806.CrossRefPubMedGoogle Scholar
  3. Chen J, Deng M, He Q, Meng E, Jiang L, Liao Z, Rong M, Liang S. Molecular diversity and evolution of cysteine knot toxins of the tarantula Chilobrachys jingzhao. Cell Mol Life Sci. 2008b;65:2431–44.CrossRefPubMedGoogle Scholar
  4. Chen Z, Luo F, Feng J, Yang W, Zeng D, Zhao R, Cao Z, Liu M, Li W, Jiang L, Wu Y. Genomic and structural characterization of Kunitz-type peptide LmKTT-1a highlights diversity and evolution of scorpion potassium channel toxins. PLoS One. 2013;8(4):e60201.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Choi S-J, Parent R, Guillaume C, Deregnaucourt C, Delarbre C, Ojcius DM, et al. Isolation and characterization of Psalmopeotoxin I and II: two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett. 2004;572(1–3):109–17.CrossRefPubMedGoogle Scholar
  6. Chung EH, Lee KS, Han JH, Sohn HD, Jin BR. Communication: analysis of expressed sequence tags of the spider, Araneus ventricosus. Int J Industr Entomol. 2001;3(2):191–9.Google Scholar
  7. Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, Corbett S, Ayoub NA. Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics. 2014;15:365.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Clarke TH, Garb JE, Hayashi CY, Arensburger P, Ayoub NA. Spider transcriptomes identify ancient large-scale gene duplication event potentially important in silk gland evolution. Genome Biol Evol. 2015;7(7):1856–70.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Corzo G, Escoubas P. Pharmacologically active spider peptide toxins. Cell Mol Life Sci. 2003;60:2409–26.CrossRefPubMedGoogle Scholar
  10. Diao J, Lin Y, Tang J, Liang S. cDNA sequence analysis of seven peptide toxins from the spider Selenocosmia huwena. Toxicon. 2003;42(7):715–23.CrossRefPubMedGoogle Scholar
  11. Diego-García E, Peigneur S, Waelkens E, Debaveye S, Tytgat J. Venom components from Citharischius crawshayi spider (Family Theraphosidae): exploring transcriptome, venomics, and function. Cell Mol Life Sci. 2010;67:2799–813.CrossRefPubMedGoogle Scholar
  12. Duan Z, Cao R, Jiang L, Liang S. A combined de novo protein sequencing and cDNA library to the venomic analysis of Chinese spider Araneus ventricosus. J Proteomics. 2013;78:416–27.CrossRefPubMedGoogle Scholar
  13. Dubovskii PV, Vassilevski AA, Samsonova OV, Egorova NS, Kozlov SA, Feofanov AV, et al. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J. 2011;278(22):4382–93.CrossRefPubMedGoogle Scholar
  14. Fernandes-Pedrosa MF, Junqueira-de-Azevedo IL, Gonçalves-de-Andrade RM, Kobashi LS, Almeida DD, Ho PL, Tambourgi DV. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics. 2008;9:279.PubMedCentralCrossRefGoogle Scholar
  15. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511.CrossRefPubMedGoogle Scholar
  16. Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol. 2001;63:871–94.CrossRefPubMedGoogle Scholar
  17. Gremski LH, da Silveira RB, Chaim OM, Probst CM, Ferrer VP, Nowatzki J, Weinschutz HC, Madeira HM, Gremski W, Nader HB, Senff-Ribeiro A, Veiga SS. A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis. Mol Biosyst. 2010;6:2403–16.CrossRefPubMedGoogle Scholar
  18. Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics. 2014;15:366.PubMedCentralCrossRefPubMedGoogle Scholar
  19. He Q, Duan Z, Yu Y, Liu Z, Liu Z, Liang S. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS One. 2013;8(11):e81357.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Herzig V, Wood DLA, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF. ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nuclei Acids Res. 2011;39:D653–7. Scholar
  21. Jan LY, Jan YN. Potassium channels and their evolving gate. Nature. 1994;371:119–22.CrossRefPubMedGoogle Scholar
  22. Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor. Trends Genet. 2008;24:375–8.CrossRefPubMedGoogle Scholar
  23. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491–511.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S. Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. Toxicon. 2008a;51(8):1479–89.CrossRefPubMedGoogle Scholar
  25. Jiang L, Chen J, Peng L, Zhang Y, Xiong X, Liang S. Genomic organization and cloning of novel genes encoding toxin-like peptides of three superfamilies from the spider Ornithoctonus huwena. Peptides. 2008b;29(10):1679–84.CrossRefPubMedGoogle Scholar
  26. Jiang L, Zhang D, Zhang Y, Peng L, Chen J, Liang S. Venomics of the spider Ornithoctonus huwena based on transcriptomic versus proteomic analysis. Comparative Biochemistry and Physiology, Part D 5. 2010;81–88.Google Scholar
  27. Jiang L, Liu C, Duan Z, Deng M, Tang X, Liang S. Transcriptome analysis of venom glands from a single fishing spider Dolomedes mizhoanus. Toxicon. 2013;73:23–32.CrossRefPubMedGoogle Scholar
  28. Jung HJ, Kim PI, Lee SK, Lee CW, Eu Y-J, Lee DG, Earm Y-E, Kim JI. Lipid membrane interaction and antimicrobial activity of GsMTx-4, an inhibitor of mechanosensitive channel. Biochem Bioph Res Co. 2006;340(2):633–8.CrossRefGoogle Scholar
  29. Kimura T, Ono S, Kubo T. Molecular cloning and sequence analysis of cDNA encoding toxin-like peptides from the venom glands of tarantula Grammostola rosea. Int J Pept. 2012; Article ID 731293.Google Scholar
  30. King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol. 2013;58(1):475–96.CrossRefPubMedGoogle Scholar
  31. King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon. 2008;52(2):264–76.CrossRefPubMedGoogle Scholar
  32. Kiyatkin NI, Dulubova IE, Chekhovskaya IA, Grishin EV. Cloning and structure of cDNA encoding α–latrotoxin from black widow spider venom. FEBS J. 1990;270(1, 2):127–31.CrossRefGoogle Scholar
  33. Klint JK, Senff S, Rupasinghe DB, Er SY, Herzig V, Nicholson GM, et al. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon. 2012;60(4):478–91.CrossRefPubMedGoogle Scholar
  34. Kozlov SA, Grishin EV. The universal algorithm of maturation for secretory and excretory protein precursors. Toxicon. 2007;49:721–6.CrossRefPubMedGoogle Scholar
  35. Kozlov S, Malyavka A, McCutchen B, Lu A, Schepers E, Herrmann R, et al. A novel strategy for the identification of toxinlike structures in spider venom. Proteins Struct Funct Bioinf. 2005;59(1):131–40.CrossRefGoogle Scholar
  36. Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem. 2006;281(30):20983–92.CrossRefPubMedGoogle Scholar
  37. Kozlov SA, Lazarev VN, Kostryukova ES, Selezneva OV, Ospanova EA, Alexeev DG, Govorun VM, Grishin EV. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus. Sci Data. 2014;1:140023.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Krapcho KJ, Kral Jr RM, Vanwagenen BC, Eppler KG, Morgan TK. Characterization and cloning of insecticidal peptides from the primitive weaving spider Diguetia canities. Insect Biochem Mol Biol. 1995;25(9):991–1000.CrossRefPubMedGoogle Scholar
  39. Mouhat S, Andreotti N, Jouirou B, Sebatier JM. Animal toxins acting on voltage-gated potassium channels. Curr Pharm Des. 2008;14:2503–18.CrossRefPubMedGoogle Scholar
  40. Nicholson GM, Little MJ, Birinyi-Strachan LC. Structure and function of δ-atracotoxins: lethal neurotoxins targeting the voltage-gated sodium channel. Toxicon. 2004;43(5):587–99.CrossRefPubMedGoogle Scholar
  41. Ostrow KL, Mammoser A, Suchyna T, Sachs F, Oswald R, Kubo S, Chino N, Gottlieb PA. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon. 2003;42(3):263–74.CrossRefPubMedGoogle Scholar
  42. Pineda SS, Wilson D, Mattick JS, King GF. The lethal toxin from Australian funnel-web spiders is encoded by an intronless gene. PLoS One. 2012;7(8):e43699.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Qiao P, Zuo X-P, Chai Z-F, Ji Y-H. The cDNA and genomic DNA organization of a novel toxin SHT-I from spider Ornithoctonus huwena. Acta Biochim Biophys Sin. 2004;36(10):656–60.CrossRefPubMedGoogle Scholar
  44. Redaelli E, Cassulini RR, Silva DF, Clement H, Schiavon E, Zamudio FZ, Odell G, Arcangeli A, Clare JJ, Alagón A, de la Vega RC, Possani LD, Wanke E. Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels. J Biol Chem. 2010;285(6):4130–42.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Sachkova MY, Slavokhotova AA, Grishin EV, Vassilevski AA. Genes and evolution of two-domain toxins from lynx spider venom. FEBS Lett. 2014;588:740–54.CrossRefPubMedGoogle Scholar
  46. Sanchez-Flores A, Abreu-Goodger C. Apractical guide to sequencing genomes and transcriptomes. Curr Top Med Chem. 2014;14(3):398–406.CrossRefPubMedGoogle Scholar
  47. Satake H, Villegas E, Oshiro N, Terada K, Shinada T, Corzo G. Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider Macrothele gigas. Toxicon. 2004;44:149–56.CrossRefPubMedGoogle Scholar
  48. Schwartz EF, Diego-García E, Rodríguez de la Vega RC, Possani LD. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics. 2007;8:119.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev. 2000;52(4):557–94.PubMedGoogle Scholar
  50. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol. 2000;115(5):583–98.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Swartz KJ, MacKinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron. 1997;18(4):665–73.CrossRefPubMedGoogle Scholar
  52. Tang X, Zhang Y, Hu W, Xu D, Tao H, Yang X, Li Y, Jiang L, Liang S. Molecular diversification of peptide toxins from the tarantula Haplopelma hainanum (Ornithoctonus hainana) venom based on transcriptomic, peptidomic, and genomic analyses. J Proteome Res. 2010;9(5):2550–64.CrossRefPubMedGoogle Scholar
  53. Undheim EA, Sunagar K, Herzig V, Kely L, Low DH, Jackson TN, Jones A, Kurniawan N, King GF, Ali SA, Antunes A, Ruder T, Fry BG. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Toxins. 2013;5(12):2488–503.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Vassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karpunin DV, Pluzhnikov KA, et al. Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem J. 2008;411(3):687–96.CrossRefPubMedGoogle Scholar
  55. Vassilevski AA, Kozlov SA, Ghishin EV. Molecular diversity of spider venom. Biochemistry (Mosc). 2009;49:211–74.Google Scholar
  56. Wan H, Lee KS, Kim BY, Zou FM, Yoon HJ, Je YH, Li J, Jin BR. A spider-derived kunitz-type serine protease inhibitor that acts as a plasmin inhibitor and an elastase inhibitor. PLoS One. 2013;8(1):e53343.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Wong ES, Hardy MC, Wood D, Bailey T, King GF. SVM-Based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS One. 2013;8(7):e66279.PubMedCentralCrossRefPubMedGoogle Scholar
  58. World Spider Catalog. Natural History Museum Bern. World Spider Catalog version 16.5. 2015; [updated 2015 July; cited 2015 July]. Available from:
  59. Yuan C, Yang S, Liao Z, Liang S. Effects and mechanism of Chinese tarantula toxins on the Kv2.1 potassium channels. Biochem. Biophys. Res. Biochem Biophys Res Commun. 2007;352:799–804.CrossRefPubMedGoogle Scholar
  60. Yuan CH, He QY, Peng K, Diao JB, Jiang LP, Tang X, Liang SP. Discovery of a distinct superfamily of Kunitz-type toxins (KTT) from tarantulas. PLoS One. 2008;3(10):e3414.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.CrossRefPubMedGoogle Scholar
  62. Zhang Y, Chen J, Tang X, Wang F, Jiang L, Xiong X, Wang M, Rong M, Liu Z, Liang S. Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. Zoology. 2010;113:10–8.CrossRefPubMedGoogle Scholar
  63. Zhang Y, Huang Y, He Q, Liu J, Luo J, Zhu L, Lu S, Huang P, Chen X, Zeng X, Liang S. Toxin diversity revealed by a transcriptomics study of Ornithoctonus huwena. PLoS One. 2014;9(6):e100682.PubMedCentralCrossRefPubMedGoogle Scholar
  64. Zhang F, Liu C, Tan H, Wang H, Jiang Y, Liang S, Zhang F, Liu Z. A survey of the venom of the spider Lycosa vittata by biochemical, pharmacological and transcriptomic analyses. Toxicon. 2015;In Press, Available online 8 May 2015.Google Scholar
  65. Zhao H, Kong Y, Wang H, Yan T, Feng F, Bian J, et al. A defensin-like antimicrobial peptide from the venoms of spider, Ornithoctonus hainana. J Pept Sci. 2011;17(7):540–4.CrossRefPubMedGoogle Scholar
  66. Zhu S, Darbon H, Dyason K, Verdonck F, Tytgat J. Evolutionary origin of inhibitor cystine knot peptides. FASEB J. 2003;17(12):1765–7.PubMedGoogle Scholar
  67. Zobel-Thropp PA, Thomas EZ, David CL, Breci LA, Binford GJ. Plectreurys tristis venome: a proteomic and transcriptomic analysis. J Venom Res. 2014;5:33–44.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2015

Authors and Affiliations

  • Elia Diego-García
    • 1
  • Camila Takeno Cologna
    • 2
  • Juliana Silva Cassoli
    • 3
  • Gerardo Corzo
    • 4
  1. 1.Independent ResearcherVeerleBelgium
  2. 2.Laboratory of Mass Spectrometry, Department of ChemistryUniversity of LiegeLiegeBelgium
  3. 3.Laboratório de Venenos e Toxinas Animais, Departamento de Bioquimica e ImunologiaInstituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Medicina Molecular y BioprocesosInstituto de Biotecnologia, UNAMCuernavacaMexico

Personalised recommendations