Advertisement

Studying the Excitatory and Inhibitory Neurotransmissions with Spider Venoms

  • José Luiz LiberatoEmail author
  • Wagner Ferreira dos Santos
Living reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Spider venoms are a complex cocktail containing hundreds of biologically active compounds resulting in a potent weapon to subdue their prey and for predator deterrence. Some spider toxins are valuable instruments for studying the physiological, pharmacological, and molecular mechanisms of nervous system of invertebrates and vertebrates. Neuroactive compounds from spider venoms have become valuable as therapeutic tools due to their extremely high specificity and potency for interaction with ion channels, receptors for neurotransmitters, and/or transporters of neurotransmitters. The study of these molecules allowed the identification and characterization of new receptors and ionic channels and also established the three-dimensional structure of receptors. It has been used in the development of new bioinsecticides as well as for drugs and therapeutic methods for the disturbances in the functioning of the nervous system.

Keywords

Spider venom Neurotransmission Excitatory Inhibitory Nervous tissue 

References

  1. Adams ME. Agatoxins: ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. Toxicon. 2004;43(5):509–25. doi:10.1016/j.toxicon.2004.02.004.CrossRefPubMedGoogle Scholar
  2. Albuquerque C, Lee CJ, Jackson AC, MacDermott AB. Subpopulations of GABAergic and non-GABAergic rat dorsal horn neurons express Ca2+-permeable AMPA receptors. Eur J Neurosci. 1999;11(8):2758–66. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10457172
  3. Báez-Pagán CA, Martínez-Ortiz Y, Otero-Cruz JD, Salgado-Villanueva IK, Velázquez G, Ortiz-Acevedo A, Lasalde-Dominicci JA. Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor’s activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome. Channels (Austin). 2008;2(3):180–90.CrossRefGoogle Scholar
  4. Beleboni RDO, Pizzo AB, Fontana ACK, de Carolino ROG, Coutinho-Netto J, Dos Santos WF, Wagner F. Spider and wasp neurotoxins: pharmacological and biochemical aspects. Eur J Pharmacol. 2004;493(1–3):1–17. doi:10.1016/j.ejphar.2004.03.049.CrossRefGoogle Scholar
  5. Beleboni RO, Guizzo R, Fontana ACK, Pizzo AB, Carolino ROG, Gobbo-Neto L, Carolino G. Neurochemical characterization of a neuroprotective compound from Parawixia bistriata spider venom that inhibits synaptosomal uptake of GABA and glycine. Mol Pharmacol. 2006;69(6):1998–2006. doi:10.1124/mol.105.017319.CrossRefPubMedGoogle Scholar
  6. Bode F, Sachs F, Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature. 2001;409:35–6.CrossRefPubMedGoogle Scholar
  7. Cairrão MAR, Ribeiro AM, Pizzo AB, Fontana ACK, Beleboni RO, Coutinho-Netto J, Santos WF. Anticonvulsant and GABA uptake inhibition properties of venom fractions from the Spiders Parawixia bistriata and Scaptocosa raptoria. Pharm Biol. 2002;40(6):472–7. doi:10.1076/phbi.40.6.472.8436.CrossRefGoogle Scholar
  8. Chen N-H, Reith MEA, Quick MW. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflügers Arch Eur J Physiol. 2004;447(5):519–31. doi:10.1007/s00424-003-1064-5.CrossRefGoogle Scholar
  9. Cull-Candy SG, Usherwood PN. Two populations of l-glutamate receptors on locust muscle fibres. Nat New Biol. 1973;246(150):62–4. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4519031
  10. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2775085&tool=pmcentrez&rendertype=abstract
  11. De Figueiredo SG, De Lima ME, Cordeiro MN, Diniz CR, Patten D, Halliwell RF, et al. Purification and amino acid sequence of a highly insecticidal toxin from the venom of the Brazilian spider Phoneutria nigriventer which inhibits NMDA-evoked currents in rat hippocampal neurones. Toxicon. 2000, p. 309–17Google Scholar
  12. Dwyer JM, Rizzo SJS, Neal SJ, Lin Q, Jow F, Arias RL, Beyer CE. Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology (Berl). 2009;203(1):41–52. doi:10.1007/s00213-008-1373-7.CrossRefGoogle Scholar
  13. Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Lazdunski M. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem. 2000;275(33):25116–21. doi:10.1074/jbc.M003643200.CrossRefPubMedGoogle Scholar
  14. Fachim HA, Cunha AOS, Pereira AC, Beleboni RO, Gobbo-Neto L, Lopes NP, dos Santos WF. Neurobiological activity of Parawixin 10, a novel anticonvulsant compound isolated from Parawixia bistriata spider venom (Araneidae: Araneae). Epilepsy Behav. 2011;22(2):158–64. doi:10.1016/j.yebeh.2011.05.008.CrossRefPubMedGoogle Scholar
  15. Fischer FG, Bohn H. Die Giftsekrete der Vogelspinnen. Justus Liebigs Annalen Der Chemie. 1957;603(1):232–50. doi:10.1002/jlac.19576030124.CrossRefGoogle Scholar
  16. Fontana AC, Cairrão MA, Colusso AJ, Santos WF, Coutinho-Netto J. Paralyzing activity of the Parawixia bistriata crude venom in termites: a new bioassay. Toxicon. 2000;38(1):133–8.CrossRefPubMedGoogle Scholar
  17. Fontana ACK, Guizzo R, de Oliveira Beleboni R, Meirelles E, Silva AR, Coimbra NC, Amara SG, Coutinho-Netto J. Purification of a neuroprotective component of Parawixia bistriata spider venom that enhances glutamate uptake. Br J Pharmacol. 2003;139(7):1297–309. doi:10.1038/sj.bjp.0705352.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Fontana K, Beleboni DO, Wojewodzic MWW, Ferreira W, Coutinho-Netto J, Grutle NJ, Ferreira Dos Santos W. Enhancing glutamate transport: mechanism of action of Parawixin1, a neuroprotective compound from Parawixia bistriata spider venom. Mol Pharmacol. 2007;72(5):1228–37. doi:10.1124/mol.107.037127.CrossRefPubMedGoogle Scholar
  19. Granja R, Fernández-Fernández JM, Izaguirre V, González-García C, Ceña V. Omega-Agatoxin IVA blocks nicotinic receptor channels in bovine chromaffin cells. FEBS Lett. 1995;362:15–8.Google Scholar
  20. Gelfuso EA, Cunha AOS, Mortari MR, Liberato JL, Paraventi KH, Beleboni RO, dos Santos WF. Neuropharmacological profile of FrPbAII, purified from the venom of the social spider Parawixia bistriata (Araneae, Araneidae), in Wistar rats. Life Sci. 2007;80(6):566–72. doi:10.1016/j.lfs.2006.10.002.CrossRefPubMedGoogle Scholar
  21. Gelfuso EA, Liberato JL, Cunha AOS, Mortari MR, Beleboni RO, Lopes NP, Wagner F. Parawixin2, a novel non-selective GABA uptake inhibitor from Parawixia bistriata spider venom, inhibits pentylenetetrazole-induced chemical kindling in rats. Neurosci Lett. 2013;543:12–6. doi:10.1016/j.neulet.2013.02.074.CrossRefPubMedGoogle Scholar
  22. Gilbo CM, Coles NW. An investigation of certain components of the venom of the female Sydney funnel web spider, Atrax robustus Cambr. Aust J Biol Sci. 1964;17(3):758–63. doi:10.1071/BI9640758.Google Scholar
  23. Godoy LD, Liberato JL, da Silva Junior PI, dos Santos WF. Mygalin: a new anticonvulsant polyamine in acute seizure model and neuroethological schedule. Cent Nerv Syst Agents Med Chem. 2013;13(2):122–31. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24195634
  24. Gottlieb PA, Barone T, Sachs F, Plunkett R. Neurite outgrowth from PC12 cells is enhanced by an inhibitor of mechanical channels. Neurosci Lett. 2010;481(2):115–9. doi:10.1016/j.neulet.2010.06.066.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Herrera Y, Katnik C, Rodriguez JD, Hall AA, Willing A, Pennypacker KR, Cuevas J. sigma-1 receptor modulation of acid-sensing ion channel a (ASIC1a) and ASIC1a-induced Ca2+ influx in rat cortical neurons. J Pharmacol Exp Ther. 2008;327(2):491–502. doi:10.1124/jpet.108.143974.CrossRefPubMedGoogle Scholar
  26. Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int. 2004;45(5):583–95. doi:10.1016/j.neuint.2004.03.007.CrossRefPubMedGoogle Scholar
  27. Jones TL, Sorkin LS. Activated PKA and PKC, but not CaMKIIalpha, are required for AMPA/Kainate-mediated pain behavior in the thermal stimulus model. Pain. 2005;117(3):259–70. doi:10.1016/j.pain.2005.06.003.CrossRefPubMedGoogle Scholar
  28. Joseph DJ, Williams DJ, MacDermott AB. Modulation of neurite outgrowth by activation of calcium-permeable kainate receptors expressed by rat nociceptive-like dorsal root ganglion neurons. Dev Neurobiol. 2011;71(10):818–35. doi:10.1002/dneu.20906.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Kawai N, Niwa A, Abe T. Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Res. 1982;247(1):169–71.CrossRefPubMedGoogle Scholar
  30. King GF. Modulation of insect Ca(v) channels by peptidic spider toxins. Toxicon. 2007;49(4):513–30. doi:10.1016/j.toxicon.2006.11.012.CrossRefPubMedGoogle Scholar
  31. King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther. 2011;11(11):1469–84. doi:10.1517/14712598.2011.621940.CrossRefPubMedGoogle Scholar
  32. Klint JK, Senff S, Rupasinghe DB, Er SY, Herzig V, Nicholson GM, King GF. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon. 2012;60(4):478–91. doi:10.1016/j.toxicon.2012.04.337.CrossRefPubMedGoogle Scholar
  33. Kott S, Sager C, Tapken D, Werner M, Hollmann M. Comparative analysis of the pharmacology of GluR1 in complex with transmembrane AMPA receptor regulatory proteins gamma2, gamma3, gamma4, and gamma8. Neuroscience. 2009;158(1):78–88. doi:10.1016/j.neuroscience.2007.12.047.CrossRefPubMedGoogle Scholar
  34. Kulik A, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker CL, Shigemoto R. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J Neurosci. 2006;26(16):4289–97. doi:10.1523/JNEUROSCI.4178-05.2006.CrossRefPubMedGoogle Scholar
  35. Levi HW. Spiders of the orb-weaver genus Parawixia in America (Araneae: Araneidae). Bull Mus Comp Zool. 1992;153:1–46.Google Scholar
  36. Liang SP, Chen XD, Shu Q, Zhang Y, Peng K. The presynaptic activity of huwentoxin-I, a neurotoxin from the venom of the Chinese bird spider Selenocosmia huwena. Toxicon. 2000;38:1237–46.CrossRefPubMedGoogle Scholar
  37. Liberato JL, Cunha AOS, Mortari MR, Gelfuso EA, Beleboni RDO, Coutinho-Netto J, dos Santos WF. Anticonvulsant and anxiolytic activity of FrPbAII, a novel GABA uptake inhibitor isolated from the venom of the social spider Parawixia bistriata (Araneidae: Araneae). Brain Res. 2006;1124(1):19–27. doi:10.1016/j.brainres.2006.09.052.CrossRefPubMedGoogle Scholar
  38. Liu M, Nakazawa K, Inoue K, Ohno Y. Potent and voltage-dependent block by philanthotoxin-343 of neuronal nicotinic receptor/channels in PC12 cells. Br J Pharmacol. 1997;122(2):379–85. doi:10.1038/sj.bjp.0701373.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Magazanic LG, Antonov SM, Fedorova IM, Volkova TM, Grishin EV. Effects of the spider Argiope lobata crude venom and its low molecular weight component, argiopin, on the postsynaptic membrane. Biologicheskie Membrany (Moscow). 1986;312:1204–1219.Google Scholar
  40. Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, Voilley N, Lazdunski M. A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci. 2007;10(8):943–5. doi:10.1038/nn1940.CrossRefPubMedGoogle Scholar
  41. Mellor IR, Usherwood PNR. Targeting ionotropic receptors with polyamine-containing toxins. Toxicon. 2004;43(5):493–508. doi:10.1016/j.toxicon.2004.02.003.CrossRefPubMedGoogle Scholar
  42. Michaelis EK, Galton N, Early SL (1984) Spider venoms inhibit l-glutamate binding to brain synaptic membrane receptors. Proc Natl Acad Sci U S A. 81(17):5571–4. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=391748&tool=pmcentrez&rendertype=abstract
  43. Morgenstern D, King GF. The venom optimization hypothesis revisited. Toxicon. 2013;63:120–8. doi:10.1016/j.toxicon.2012.11.022.CrossRefPubMedGoogle Scholar
  44. Mussi-Ribeiro A, Miranda A, Gobbo-Netto L, Peporine Lopes N, dos Santos WF. A anticonvulsive fraction from Scaptocosa raptoria (Araneae: Lycosidae) spider venom. Neurosci Lett. 2004;371(2–3):171–5. doi:10.1016/j.neulet.2004.08.064.CrossRefPubMedGoogle Scholar
  45. Newberry NR, Nicoll RA. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 1984;308(5958):450–2Google Scholar
  46. Newberry NR, Nicoll RA. A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J Physiol. 1984;348:239–54. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1199399&tool=pmcentrez&rendertype=abstract
  47. Nishimaru T, Sano M, Yamaguchi Y, Wakamiya T. Syntheses and biological activities of fluorescent-labeled analogs of acylpolyamine toxin NPTX-594 isolated from the venom of Madagascar Joro spider. Bioorg Med Chem. 2009a;17(1):57–63. doi:10.1016/j.bmc.2008.11.029.CrossRefPubMedGoogle Scholar
  48. Nishimaru T, Yamaguchi Y, Wakamiya T. Syntheses of NPTX-594 analogs with thiol-containing fluorophores to develop a probe for analysis of binding mode between spider toxins and glutamate receptors. Protein Pept Lett. 2009b;16(3):285–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19275742
  49. Poulsen MH, Lucas S, Bach TB, Barslund AF, Wenzler C, Jensen CB, Strømgaard K. Structure-activity relationship studies of argiotoxins: selective and potent inhibitors of ionotropic glutamate receptors. J Med Chem. 2013;56(3):1171–81. doi:10.1021/jm301602d.CrossRefPubMedGoogle Scholar
  50. Purves D, Augustine GJ, Chikaraishi DM, Ehlers MD, Einstein G, Fitzpatrick D, Williams SM, editors. Neuroscience. 3rd ed. Sunderland: Sinauer Associates; 2004. p. 832.Google Scholar
  51. Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon. 2002;40(3):225–54.CrossRefPubMedGoogle Scholar
  52. Rocha-E-Silva TAA, Rostelato-Ferreira S, Leite GB, da Silva PI, Hyslop S, Rodrigues-Simioni L. VdTX-1, a reversible nicotinic receptor antagonist isolated from venom of the spider Vitalius dubius (Theraphosidae). Toxicon. 2013;70:135–41. doi:10.1016/j.toxicon.2013.04.020.CrossRefPubMedGoogle Scholar
  53. Rogoza LN, Salakhutdinov NF, Tolstikov GA. Polymethyleneamine alkaloids of animal origin: II. polyamine neurotoxins. Russ J Bioorg Chem. 2006;32(1):23–36. doi:10.1134/S106816200601002X.CrossRefGoogle Scholar
  54. Romano-Silva MA, Gomez MV, Diniz CR, Cordeiro MN, Ribeiro AM. Acetylcholine release from rat brain cortical slices evoked by the fraction P4 of the venom of the spider Phoneutria nigriventer has Ca2+ and temperature independent components. Neurosci Lett. 1996;219(3):159–62.CrossRefPubMedGoogle Scholar
  55. Ross SB, Fuller CM, Bubien JK, Benos DJ. Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells. Am J Physiol Cell Physiol. 2007;293(3):C1181–5. doi:10.1152/ajpcell.00066.2007.CrossRefPubMedGoogle Scholar
  56. Salamoni SD, da Costa JC, Palma MS, Konno K, Nihei K, Azambuja NA, Breda RV. The antiepileptic activity of JSTX-3 is mediated by N-methyl-d-aspartate receptors in human hippocampal neurons. Neuroreport. 2005;16(16):1869–73.CrossRefPubMedGoogle Scholar
  57. Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, Julius D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature. 2006;444(7116):208–12. doi:10.1038/nature05285.CrossRefPubMedGoogle Scholar
  58. Sodickson DL, Bean BP (1998) Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors. J Neurosci. 1998; 18(20):8153–62. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9763462
  59. Torres-salazar D, Fahlke C. Parawixin1: a spider toxin opening new avenues for glutamate transporter pharmacology. Mol Pharmacol. 2007;72(5):1100–2. doi:10.1124/mol.107.041020.CrossRefPubMedGoogle Scholar
  60. Usherwood PN, Blagbrough IS. Spider toxins affecting glutamate receptors: polyamines in therapeutic neurochemistry. Pharmacol Ther. 1991;52(2):245–68.CrossRefPubMedGoogle Scholar
  61. Usherwood PN, Duce IR, Boden P. Slowly-reversible block of glutamate receptor-channels by venoms of the spiders, Argiope trifasciata and Araneus gemma. J Physiol. 1984; 79(4):241–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6099411
  62. Vigot R, Barbieri S, Bräuner-Osborne H, Turecek R, Shigemoto R, Zhang Y-P, Bettler B. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron. 2006;50(4):589–601. doi:10.1016/j.neuron.2006.04.014.CrossRefPubMedCentralPubMedGoogle Scholar
  63. Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nat Rev Neurosci. 2013;14(7):461–71. doi:10.1038/nrn3529.CrossRefPubMedCentralPubMedGoogle Scholar
  64. Xiong Z-G, Zhu X-M, Chu X-P, Minami M, Hey J, Wei W-L, Simon RP. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118(6):687–98. doi:10.1016/j.cell.2004.08.026.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • José Luiz Liberato
    • 1
    Email author
  • Wagner Ferreira dos Santos
    • 1
  1. 1.Neurobiology and Venoms Laboratory, Biology Department, College of Philosophy, Sciences and LiteratureUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations