Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Paleophysiography of Ocean Basins

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_84-1

Synonyms

Definition

Plate motions and the history of plate boundary geometries through time are the primary drivers for the large-scale paleophysiography of the ocean basins. These in turn determine the history of seafloor spreading and subduction, driving the time dependence of the age-area distribution of ocean floor. The depth of the ocean floor and volume of the ocean basins are primarily dependent on its age. Reconstructions of the age and depth distribution of the ocean floor combined with estimates of sediment thickness through time and the reconstruction of oceanic plateaus yield broad-scale paleophysiographic maps of the ocean basins.

Introduction

The paleophysiography of the ocean basins relies on an understanding of the current physiography of the oceans and the processes governing its development through geological time. The most fundamental parameter driving the depth distribution of ocean basins is the age of the oceanic lithosphere. The...

Keywords

Ocean Basin Seafloor Spreading Oceanic Plateau Parece Velum Basin Global Plate Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Afonso, J., Zlotnik, S., and Fernández, M., 2008. Effects of compositional and rheological stratifications on small-scale convection under the oceans: Implications for the thickness of oceanic lithosphere and seafloor flattening. Geophysical Research Letters, 35, L20308.CrossRefGoogle Scholar
  2. Alvey, A., Gaina, C., Kusznir, N., and Torsvik, T., 2008. Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth and Planetary Science Letters, 274(3–4), 310–321.CrossRefGoogle Scholar
  3. Atwater, T., 1970. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513–3536.CrossRefGoogle Scholar
  4. Coffin, M. F., Duncan, R. A., Eldholm, O., Fitton, J. G., Frey, F. A., Larsen, H. C., Mahoney, J. J., Saunders, A. D., Schlich, R., and Wallace, P. J., 2006. Large igneous provinces and scientific ocean drilling: status quo and a look ahead. Oceanography, 19(4), 150–160.CrossRefGoogle Scholar
  5. Colpron, M., Nelson, J. A. L., and Murphy, D. C., 2007. Northern Cordilleran terranes and their interactions through time. GSA Today, 17(4), 4–10.CrossRefGoogle Scholar
  6. Cox, A., and Hart, B. R., 1986. Plate Tectonics: How It Works. Boston: Blackwell Science Inc. 400 pp.Google Scholar
  7. Crosby, A. G., and McKenzie, D., 2009. An analysis of young ocean depth, gravity and global residual topography. Geophysical Journal International, 178(3), 1198–1219.CrossRefGoogle Scholar
  8. Gibbons, A. D., Barckhausen, U., van den Bogaard, P., Hoernle, K., Werner, R., Whittaker, J. M., and Müller, R. D., 2012. Constraining the Jurassic extent of Greater India: tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 13, Q05W13.CrossRefGoogle Scholar
  9. Gibbons, A. D., Whittaker, J. M., and Dietmar Müller, R., 2013. The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. Journal of Geophysical Research, 118, 808–822.Google Scholar
  10. Halgedahl, S., and Jarrard, R., 1987. Paleomagnetism of the Kuparuk River formation from oriented drill core: evidence for rotation of the North Slope block. In Tailleur, I. L., and Weimer, P. (eds.), Alaskan North Slope Geology. Los Angeles: Society of Economic Paleontologists and Mineralogists, Pacific Section, pp. 581–617.Google Scholar
  11. Labails, C., Olivet, J., Aslanian, D., and Roest, W., 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 297, 355–368.CrossRefGoogle Scholar
  12. Larson, R. L., and Chase, C. G., 1972. Late Mesozoic evolution of the western Pacific. Geological Society of America Bulletin, 83, 3627–3644.CrossRefGoogle Scholar
  13. Lawver, L. A., Gahagan, L. M., and Dalziel, I. W. D., 2011. A different look at gateways: Drake Passage and Australia/Antarctica. In Anderson, J. B., and Wellner, J. S. (eds.), Tectonic, Climatic, and Cryospheric Evolution of the Antarctic Peninsula. Washington, DC: AGU, Vol. 63, pp. 5–33.Google Scholar
  14. Matthews, K. J., Seton, M., and Müller, R. D., 2012. A global-scale plate reorganization event at 105–100 Ma. Earth and Planetary Science Letters, 355, 283–298.CrossRefGoogle Scholar
  15. Mihalynuk, M. G., Nelson, J. A., and Diakow, L. J., 1994. Cache Creek terrane entrapment: oroclinal paradox within the Canadian Cordillera. Tectonics, 13(3), 575–595.CrossRefGoogle Scholar
  16. Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R., 2008a. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, Q04006, doi:10.1029/2007GC001743.CrossRefGoogle Scholar
  17. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., and Heine, C., 2008b. Long-term sea level fluctuations driven by ocean basin dynamics. Science, 319(5868), 1357–1362.CrossRefGoogle Scholar
  18. Müller, R. D., Dutkiewicz, A., Seton, M., and Gaina, C., 2013. Seawater chemistry driven by supercontinent assembly, break-up and dispersal. Geology, 41, 907–910.CrossRefGoogle Scholar
  19. Nakanishi, M., Tamaki, K., and Kobayashi, K., 1992a. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west central Pacific Ocean. Geophysical Journal International, 109(3), 701–719.CrossRefGoogle Scholar
  20. Nakanishi, M., Tamaki, K., and Kobayashi, K., 1992b. A new Mesozoic isochron chart of the northwestern Pacific Ocean: paleomagnetic and tectonic implications. Geophysical Research Letters, 19(7), 693–696.CrossRefGoogle Scholar
  21. Nelson, J. A., and Mihalynuk, M., 1993. Cache Creek ocean: closure or enclosure? Geology, 21(2), 173.CrossRefGoogle Scholar
  22. Parsons, B., and Sclater, J. G., 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82(5), 803–827.CrossRefGoogle Scholar
  23. Phipps Morgan, J., and Smith, W. H. F., 1992. Flattening of the sea-floor depth-age curve as a response to asthenospheric flow. Nature, 359(6395), 524–527.CrossRefGoogle Scholar
  24. Phipps Morgan, J., Morgan, W. J., and Price, E., 1995. Hotspot melting generates both hotspot volcanism and a hotspot swell? Journal of Geophysical Research, 100(B5), 8045–8062.CrossRefGoogle Scholar
  25. Schubert, G., and Sandwell, D., 1989. Crustal volumes of the continents and of oceanic and continental submarine plateaus. Earth and Planetary Science Letters, 92, 234–246.CrossRefGoogle Scholar
  26. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G. E., Talsma, A. S., Gurnis, M., Turner, M., Maus, S., and Chandler, M. T., 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth Science Reviews, 113, 212–270.CrossRefGoogle Scholar
  27. Spasojevic, S., and Gurnis, M., 2012. Sea level and vertical motion of continents from dynamic earth models since the Late Cretaceous. AAPG Bulletin, 96(11), 2037–2064.CrossRefGoogle Scholar
  28. Stein, C., and Stein, S., 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391), 123–129.CrossRefGoogle Scholar
  29. Sykes, T. J., 1996. A correction for sediment load upon the ocean floor: uniform versus varying sediment density estimations – implications for isostatic correction. Marine Geology, 133(1), 35–49.CrossRefGoogle Scholar
  30. Taylor, B., 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241(3–4), 372–380.CrossRefGoogle Scholar
  31. Torsvik, T. H., Rousse, S., Labails, C., and Smethurst, M. A., 2009. A new scheme for the opening of the south atlantic ocean and the dissection of an aptian salt basin. Geophysical Journal International, 177(3), 1315–1333.CrossRefGoogle Scholar
  32. Turcotte, D. L., and Oxburgh, E. R., 1967. Finite amplitude convection cells and continental drift. Journal of Fluid Mechanics, 28, 29–42.CrossRefGoogle Scholar
  33. Van der Voo, R., Spakman, W., and Bijwaard, H., 1999. Mesozoic subducted slabs under Siberia. Nature, 397(6716), 246–249.CrossRefGoogle Scholar
  34. Viso, R. F., Larson, R. L., and Pockalny, R. A., 2005. Tectonic evolution of the Pacific-Phoenix-Farallon triple junction in the South Pacific Ocean. Earth and Planetary Science Letters, 233(1–2), 179.CrossRefGoogle Scholar
  35. Zorin, Y. A., 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 306(1), 33–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.EarthByte Group, School of GeosciencesUniversity of SydneySydneyAustralia