Paleophysiography of Ocean Basins
Synonyms
Definition
Plate motions and the history of plate boundary geometries through time are the primary drivers for the large-scale paleophysiography of the ocean basins. These in turn determine the history of seafloor spreading and subduction, driving the time dependence of the age-area distribution of ocean floor. The depth of the ocean floor and volume of the ocean basins are primarily dependent on its age. Reconstructions of the age and depth distribution of the ocean floor combined with estimates of sediment thickness through time and the reconstruction of oceanic plateaus yield broad-scale paleophysiographic maps of the ocean basins.
Introduction
The paleophysiography of the ocean basins relies on an understanding of the current physiography of the oceans and the processes governing its development through geological time. The most fundamental parameter driving the depth distribution of ocean basins is the age of the oceanic lithosphere. The...
Keywords
Ocean Basin Seafloor Spreading Oceanic Plateau Parece Velum Basin Global Plate MotionBibliography
- Afonso, J., Zlotnik, S., and Fernández, M., 2008. Effects of compositional and rheological stratifications on small-scale convection under the oceans: Implications for the thickness of oceanic lithosphere and seafloor flattening. Geophysical Research Letters, 35, L20308.CrossRefGoogle Scholar
- Alvey, A., Gaina, C., Kusznir, N., and Torsvik, T., 2008. Integrated crustal thickness mapping and plate reconstructions for the high Arctic. Earth and Planetary Science Letters, 274(3–4), 310–321.CrossRefGoogle Scholar
- Atwater, T., 1970. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513–3536.CrossRefGoogle Scholar
- Coffin, M. F., Duncan, R. A., Eldholm, O., Fitton, J. G., Frey, F. A., Larsen, H. C., Mahoney, J. J., Saunders, A. D., Schlich, R., and Wallace, P. J., 2006. Large igneous provinces and scientific ocean drilling: status quo and a look ahead. Oceanography, 19(4), 150–160.CrossRefGoogle Scholar
- Colpron, M., Nelson, J. A. L., and Murphy, D. C., 2007. Northern Cordilleran terranes and their interactions through time. GSA Today, 17(4), 4–10.CrossRefGoogle Scholar
- Cox, A., and Hart, B. R., 1986. Plate Tectonics: How It Works. Boston: Blackwell Science Inc. 400 pp.Google Scholar
- Crosby, A. G., and McKenzie, D., 2009. An analysis of young ocean depth, gravity and global residual topography. Geophysical Journal International, 178(3), 1198–1219.CrossRefGoogle Scholar
- Gibbons, A. D., Barckhausen, U., van den Bogaard, P., Hoernle, K., Werner, R., Whittaker, J. M., and Müller, R. D., 2012. Constraining the Jurassic extent of Greater India: tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 13, Q05W13.CrossRefGoogle Scholar
- Gibbons, A. D., Whittaker, J. M., and Dietmar Müller, R., 2013. The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. Journal of Geophysical Research, 118, 808–822.Google Scholar
- Halgedahl, S., and Jarrard, R., 1987. Paleomagnetism of the Kuparuk River formation from oriented drill core: evidence for rotation of the North Slope block. In Tailleur, I. L., and Weimer, P. (eds.), Alaskan North Slope Geology. Los Angeles: Society of Economic Paleontologists and Mineralogists, Pacific Section, pp. 581–617.Google Scholar
- Labails, C., Olivet, J., Aslanian, D., and Roest, W., 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 297, 355–368.CrossRefGoogle Scholar
- Larson, R. L., and Chase, C. G., 1972. Late Mesozoic evolution of the western Pacific. Geological Society of America Bulletin, 83, 3627–3644.CrossRefGoogle Scholar
- Lawver, L. A., Gahagan, L. M., and Dalziel, I. W. D., 2011. A different look at gateways: Drake Passage and Australia/Antarctica. In Anderson, J. B., and Wellner, J. S. (eds.), Tectonic, Climatic, and Cryospheric Evolution of the Antarctic Peninsula. Washington, DC: AGU, Vol. 63, pp. 5–33.Google Scholar
- Matthews, K. J., Seton, M., and Müller, R. D., 2012. A global-scale plate reorganization event at 105–100 Ma. Earth and Planetary Science Letters, 355, 283–298.CrossRefGoogle Scholar
- Mihalynuk, M. G., Nelson, J. A., and Diakow, L. J., 1994. Cache Creek terrane entrapment: oroclinal paradox within the Canadian Cordillera. Tectonics, 13(3), 575–595.CrossRefGoogle Scholar
- Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R., 2008a. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, Q04006, doi:10.1029/2007GC001743.CrossRefGoogle Scholar
- Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., and Heine, C., 2008b. Long-term sea level fluctuations driven by ocean basin dynamics. Science, 319(5868), 1357–1362.CrossRefGoogle Scholar
- Müller, R. D., Dutkiewicz, A., Seton, M., and Gaina, C., 2013. Seawater chemistry driven by supercontinent assembly, break-up and dispersal. Geology, 41, 907–910.CrossRefGoogle Scholar
- Nakanishi, M., Tamaki, K., and Kobayashi, K., 1992a. Magnetic anomaly lineations from Late Jurassic to Early Cretaceous in the west central Pacific Ocean. Geophysical Journal International, 109(3), 701–719.CrossRefGoogle Scholar
- Nakanishi, M., Tamaki, K., and Kobayashi, K., 1992b. A new Mesozoic isochron chart of the northwestern Pacific Ocean: paleomagnetic and tectonic implications. Geophysical Research Letters, 19(7), 693–696.CrossRefGoogle Scholar
- Nelson, J. A., and Mihalynuk, M., 1993. Cache Creek ocean: closure or enclosure? Geology, 21(2), 173.CrossRefGoogle Scholar
- Parsons, B., and Sclater, J. G., 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82(5), 803–827.CrossRefGoogle Scholar
- Phipps Morgan, J., and Smith, W. H. F., 1992. Flattening of the sea-floor depth-age curve as a response to asthenospheric flow. Nature, 359(6395), 524–527.CrossRefGoogle Scholar
- Phipps Morgan, J., Morgan, W. J., and Price, E., 1995. Hotspot melting generates both hotspot volcanism and a hotspot swell? Journal of Geophysical Research, 100(B5), 8045–8062.CrossRefGoogle Scholar
- Schubert, G., and Sandwell, D., 1989. Crustal volumes of the continents and of oceanic and continental submarine plateaus. Earth and Planetary Science Letters, 92, 234–246.CrossRefGoogle Scholar
- Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G. E., Talsma, A. S., Gurnis, M., Turner, M., Maus, S., and Chandler, M. T., 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth Science Reviews, 113, 212–270.CrossRefGoogle Scholar
- Spasojevic, S., and Gurnis, M., 2012. Sea level and vertical motion of continents from dynamic earth models since the Late Cretaceous. AAPG Bulletin, 96(11), 2037–2064.CrossRefGoogle Scholar
- Stein, C., and Stein, S., 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391), 123–129.CrossRefGoogle Scholar
- Sykes, T. J., 1996. A correction for sediment load upon the ocean floor: uniform versus varying sediment density estimations – implications for isostatic correction. Marine Geology, 133(1), 35–49.CrossRefGoogle Scholar
- Taylor, B., 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241(3–4), 372–380.CrossRefGoogle Scholar
- Torsvik, T. H., Rousse, S., Labails, C., and Smethurst, M. A., 2009. A new scheme for the opening of the south atlantic ocean and the dissection of an aptian salt basin. Geophysical Journal International, 177(3), 1315–1333.CrossRefGoogle Scholar
- Turcotte, D. L., and Oxburgh, E. R., 1967. Finite amplitude convection cells and continental drift. Journal of Fluid Mechanics, 28, 29–42.CrossRefGoogle Scholar
- Van der Voo, R., Spakman, W., and Bijwaard, H., 1999. Mesozoic subducted slabs under Siberia. Nature, 397(6716), 246–249.CrossRefGoogle Scholar
- Viso, R. F., Larson, R. L., and Pockalny, R. A., 2005. Tectonic evolution of the Pacific-Phoenix-Farallon triple junction in the South Pacific Ocean. Earth and Planetary Science Letters, 233(1–2), 179.CrossRefGoogle Scholar
- Zorin, Y. A., 1999. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 306(1), 33–56.CrossRefGoogle Scholar