Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Crustal Accretion

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_8-1

Synonyms

Definition

Crustal Accretion. Formation of ocean crust at mid-ocean ridges, by a combination of magmatic, tectonic, and hydrothermal processes.

Introduction

Since the early 1970s, the classical model of a uniformly layered ocean crust, with from top to bottom basaltic lava flows, basaltic sheeted dikes, and gabbros, known as the “Penrose” model (Anonymous, 1972), has considerably evolved, with complementary contributions from ophiolite studies, seafloor geology, marine geophysics, and scientific ocean drilling. At the global scale, there is substantial variability of the mid-ocean ridge morphology and hence of crustal architecture. This results from various modes of accretion that are controlled by magma supply to the ridge, which itself primarily depends on the spreading rate. This article briefly describes the current end-member models for crustal accretion at fast-spreading (>~80 mm/year) and slow-spreading (<~40 mm/year) ridges.

Fast-Spreading...

Keywords

Detachment Fault Ridge Axis Cocos Plate Integrate Ocean Drill Program Sheet Dike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Bibliography

  1. Anonymous, 1972. Penrose field conference on ophiolites. Geotimes, 17, 24–25.Google Scholar
  2. Blackman, D. K., Ildefonse, B., John, B. E., Ohara, Y., Miller, D. J., Abe, N., Abratis, M., Andal, E. S., Andreani, M., Awaji, S., Beard, J. S., Brunelli, D., Charney, A. B., Christie, D. M., Collins, J., Delacour, A. G., Delius, H., Drouin, M., Einaudi, F., Escartín, J., Frost, B. R., Früh-Green, G., Fryer, P. B., Gee, J. S., Godard, M., Grimes, C. B., Halfpenny, A., Hansen, H. E., Harris, A. C., Tamura, A., Hayman, N. W., Hellebrand, E., Hirose, T., Hirth, J. G., Ishimaru, S., Johnson, K. T. M., Karner, G. D., Linek, M., MacLeod, C. J., Maeda, J., Mason, O. U., McCaig, A. M., Michibayashi, K., Morris, A., Nakagawa, T., Nozaka, T., Rosner, M., Searle, R. C., Suhr, G., Tominaga, M., von der Handt, A., Yamasaki, T., and Zhao, X., 2011. Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N. Journal of Geophysical Research, 116, B07103, doi:10.1029/2010JB007931.CrossRefGoogle Scholar
  3. Boudier, F., Nicolas, A., and Ildefonse, B., 1996. Magma chambers in the Oman ophiolite: fed from the top and the bottom. Earth and Planetary Science Letters, 144, 239–250, doi:10.1016/0012-821X(96)00167-7.CrossRefGoogle Scholar
  4. Canales, J. P., Collins, J. A., Escartín, J., and Detrick, R. S., 2000. Seismic structure across the rift valley of the Mid-Atlantic ridge at 23°20′N (MARK area): implications for crustal accretion processes at slow-spreading ridges. Journal of Geophysical Research, 105, 28411–28425, doi:10.1029/2000JB900301.CrossRefGoogle Scholar
  5. Canales, J. P., Nedimović, M. R., Kent, G. M., Carbotte, S. M., and Detrick, R. S., 2009. Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge. Nature, 460, 89–93, doi:10.1038/nature08095.CrossRefGoogle Scholar
  6. Cann, J. R., 1974. A model for oceanic crystal structure developed. Geophysical Journal International, 39, 169–187, doi:10.1111/j.1365-246X.1974.tb05446.x.CrossRefGoogle Scholar
  7. Cann, J. R., Blackman, D. K., Smith, D. K., McAllister, E., Janssen, B., Mello, S., Avgerinos, E., Pascoe, A. R., and Escartín, J., 1997. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature, 385, 329–332, doi:10.1038/385329a0.CrossRefGoogle Scholar
  8. Cannat, M., 1993. Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research, 98, 4163–4172, doi:10.1029/92JB02221.CrossRefGoogle Scholar
  9. Cannat, M., Mével, C., Maia, M., Deplus, C., Durand, C., Gente, P., Agrinier, P., Belarouchi, A., Dubuisson, G., Humler, E., and Reynolds, J., 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology, 23, 49–52, doi:10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2.CrossRefGoogle Scholar
  10. Cannat, M., Sauter, D., Mendel, V., Ruellan, É., Okino, K., Escartín, J., Combier, V., and Baala, M., 2006. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology, 34, 605–608, doi:10.1130/G22486.1.CrossRefGoogle Scholar
  11. Carbotte, S. M., Marjanović, M., Carton, H., Mutter, J. C., Canales, J. P., Nedimović, M. R., Han, S., and Perfit, M. R., 2013. Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nature Geoscience, 6, 866–870, doi:10.1038/ngeo1933.CrossRefGoogle Scholar
  12. Detrick, R. S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., and Brocher, T., 1987. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature, 326, 35–41, doi:10.1038/326035a0.CrossRefGoogle Scholar
  13. Dick, H. J. B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In Saunders, A. D., and Norry, M. J. (eds.), Magmatism in the Ocean Basins. London: Geological Society. Geological Society Special Publications, Vol. 42, pp. 71–105.Google Scholar
  14. Dick, H. J. B., Lissenberg, C. J., and Warren, J. M., 2010. Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: the Paleo-MAR from 23°15′N to 23°45′N. Journal of Petrology, 51, 425–467, doi:10.1093/petrology/egp088.CrossRefGoogle Scholar
  15. Dunn, R. A., Toomey, D. R., and Solomon, S. C., 2000. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30′N. Journal of Geophysical Research, 105, 23537–23555, doi:10.1029/2000JB900210.CrossRefGoogle Scholar
  16. Escartín, J., Mével, C., MacLeod, C.J., and McCaig, A.M., 2003. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45′N. Geochem Geophys Geosyst, 4, doi:10.1029/2002GC000472.Google Scholar
  17. Escartín, J., and Canales, J. P., 2011. Detachments in oceanic lithosphere: deformation, magmatism, fluid flow, and ecosystems. Eos, Transactions of the American Geophysical Union, 92, 31, doi:10.1029/2011EO040003.CrossRefGoogle Scholar
  18. Escartín, J., Smith, D. K., Cann, J., Schouten, H., Langmuir, C. H., and Escrig, S., 2008. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455, 790–794, doi:10.1038/nature07333.CrossRefGoogle Scholar
  19. France, L., Ildefonse, B., and Koepke, J., 2009. Interactions between magma and hydrothermal system in Oman ophiolite and in IODP Hole 1256D: fossilization of a dynamic melt lens at fast spreading ridges. Geochemistry, Geophysics, Geosystems, 10, Q10O19, doi:10.1029/2009GC002652.CrossRefGoogle Scholar
  20. Gillis, K. M., 2008. The roof of an axial magma chamber: a hornfelsic heat exchanger. Geology, 36, 299–302, doi:10.1130/G24590A.1.CrossRefGoogle Scholar
  21. Gillis, K. M., Snow, J. E., Klaus, A., Abe, N., Adrião, Á. B., Akizawa, N., Ceuleneer, G., Cheadle, M. J., Faak, K., Falloon, T. J., Friedman, S. A., Godard, M., Guerin, G., Harigane, Y., Horst, A. J., Hoshide, T., Ildefonse, B., Jean, M. M., John, B. E., Koepke, J., Machi, S., Maeda, J., Marks, N. E., McCaig, A. M., Meyer, R., Morris, A., Nozaka, T., Python, M., Saha, A., and Wintsch, R. P., 2014. Primitive layered gabbros from fast-spreading lower oceanic crust. Nature, 505, 204–207, doi:10.1038/nature12778.CrossRefGoogle Scholar
  22. Goss, A. R., Perfit, M. R., Ridley, W. I., Rubie, K. H., Kamenov, G. D., Soule, S. A., Fundis, A., and Fornari, D. J., 2010. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46′N-9°56′N: implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochemistry, Geophysics, Geosystems, 11, Q05T09, doi:10.1029/2009GC002977.CrossRefGoogle Scholar
  23. Hale, L. D., Morton, C. J., and Sleep, N. H., 1982. Reinterpretation of seismic reflection data over the East Pacific Rise. Journal of Geophysical Research, 87, 7707–7717, doi:10.1029/JB087iB09p07707.CrossRefGoogle Scholar
  24. Henstock, T. J., Woods, A. W., and White, R. S., 1993. The accretion of oceanic crust by episodic sill intrusion. Journal of Geophysical Research, 98, 4143–4161, doi:10.1029/92JB02661.CrossRefGoogle Scholar
  25. Hooft, E. E. E., Detrick, R. S., and Kent, G. M., 1997. Seismic structure and indicators of magma budget along the southern East Pacific Rise. Journal of Geophysical Research, 102, 27319–27340, doi:10.1029/97JB02349.CrossRefGoogle Scholar
  26. Ildefonse, B., Blackman, D. K., John, B. E., Ohara, Y., Miller, D. J., MacLeod, C. J., and IODP Expeditions 304/305 Science Party, 2007. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology, 35, 623–626, doi:10.1130/G23531A.1.CrossRefGoogle Scholar
  27. Ildefonse, B., Abe, N., Godard, M., Morris, A., Teagle, D.A.H., and Umino, S., 2014. Formation and evolution of oceanic lithosphere: new insights on crustal structure and igneous chemistry from ODP/IODP Sites 1256, U1309 and U1415. In Stein, R., Blackman, D., Inagaki, F., and Larsen H.-C. (eds.), Earth and life processes discovered from subseafloor environments, a decade of science achieved by the Integrated Ocean Drilling Program (IODP). Developments in Marine Geology, 7, 449–505. doi:10.1016/B978-0-444-62617-2.00017-7.Google Scholar
  28. Karson, J. A., Thompson, G., Humphris, S. E., Edmond, J. M., Bryan, W. B., Brown, J. R., Winters, A. T., Pockalny, R. A., Casey, J. F., Campbell, A. C., Klinkhammer, G., Palmer, M. R., Kinzler, R. J., and Sulanowska, M. M., 1987. Along-axis variations in seafloor spreading in the MARK area. Nature, 328, 681–685, doi:10.1038/328681a0.CrossRefGoogle Scholar
  29. Kelemen, P. B., Koga, K., and Shimizu, N., 1997. Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth and Planetary Science Letters, 146, 475–488, doi:10.1016/S0012-821X(96)00235-X.CrossRefGoogle Scholar
  30. Kelemen, P. B., Kikawa, E., Miller, D. J., and Shipboard Scientific Party, 2007. Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°–16°N. In Kelemen, P. B., Kikawa, E., and Miller, D. J. (eds.), Proceedings of the ODP, Science Results. College Station (Ocean Drilling Program), Vol. 209, pp. 1–33, doi:10.2973/odp.proc.sr.209.001.2007.Google Scholar
  31. Kent, G. M., Harding, A. J., Orcutt, J. A., Detrick, R. S., Mutter, J. C., and Buhl, P., 1994. Uniform accretion of oceanic crust south of the Garrett transform at 14°15′S on the East Pacific Rise. Journal of Geophysical Research, 99, 9097–9116, doi:10.1029/93JB02872.CrossRefGoogle Scholar
  32. Lagabrielle, Y., Vitale-Brovarone, A., and Ildefonse, B., 2015. Fossil oceanic core complexes recognized in the blueschist metaophiolites of Western Alps and Corsica. Earth-Science Reviews, 141, 1–26, doi:10.1016/j.earscirev.2014.11.004.Google Scholar
  33. Macdonald, K. C., Fox, P. J., Perram, L. J., Eisen, M. F., Haymon, R. M., Miller, S. P., Carbotte, S. M., Cormier, M. H., and Shor, A. N., 1988. A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities. Nature, 335, 217–225, doi:10.1038/335217a0.CrossRefGoogle Scholar
  34. Maclennan, J., Hulme, T., and Singh, S. C., 2005. Cooling of the lower oceanic crust. Geology, 33, 357–366, doi:10.1130/G21207.1.CrossRefGoogle Scholar
  35. MacLeod, C. J., Searle, R. C., Murton, B. J., Casey, J. F., Mallows, C., Unsworth, S. C., Achenbach, K. L., and Harris, M., 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters, 287, 333–344, doi:10.1016/j.epsl.2009.08.016.CrossRefGoogle Scholar
  36. Marjanović, M., Carbotte, S. M., Carton, H., Nedimović, M. R., Mutter, J. C., and Canales, J. P., 2014. A multi-sill magma plumbing system beneath the axis of the East Pacific Rise. Nature Geoscience, 7, 825–829, doi:10.1038/ngeo2272.CrossRefGoogle Scholar
  37. McCaig, A. M., and Harris, M., 2012. Hydrothermal circulation and the dike-gabbro transition in the detachment mode of slow seafloor spreading. Geology, 40, 367–370, doi:10.1130/G32789.1.CrossRefGoogle Scholar
  38. Morton, J. L., and Sleep, N. H., 1985. Seismic reflections from a Lau Basin magma chamber. In Schol, D. W., and Vallier, T. L. (eds.), Geology and Offshore Resources of Pacific Island Arcs-Tonga Region. Houston: Circum-Pacific Council for Energy and Mineral Resources. Earth Science Series, Vol. 2, pp. 441–453.Google Scholar
  39. Pallister, J. S., and Hopson, C. A., 1981. Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. Journal of Geophysical Research, 86, 2593–2644, doi:10.1029/JB086iB04p02593.CrossRefGoogle Scholar
  40. Phipps Morgan, J., and Chen, Y. J., 1993. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow. Journal of Geophysical Research, 98, 6283–6297, doi:10.1029/92JB02650.CrossRefGoogle Scholar
  41. Sauter, D., Cannat, M., Rouméjon, S., Andreani, M., Birot, D., Bronner, A., Brunelli, D., Carlut, J., Delacour, A., Guyader, V., MacLeod, C. J., Manatschal, G., Mendel, V., Ménez, B., Pasini, V., Ruellan, É., and Searle, R., 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 6, 314–320, doi:10.1038/ngeo1771.CrossRefGoogle Scholar
  42. Singh, S. C., Kent, G. M., Collier, J. S., Harding, A. J., and Orcutt, J. A., 1998. Melt to mush variations in crustal magma properties along the ridge crest at the southern East Pacific Rise. Nature, 394, 874–878, doi:10.1038/29740.CrossRefGoogle Scholar
  43. Singh, S. C., Crawford, W. C., Carton, H., Seher, T., Combier, V., Cannat, M., Pablo Canales, J., Dusunur, D., Escartín, J., and Miguel Miranda, J., 2006. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature, 442, 1029–1032, doi:10.1038/nature05105.CrossRefGoogle Scholar
  44. Sinton, J. M., and Detrick, R. S., 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research, 97, 197–216, doi:10.1029/91JB02508.CrossRefGoogle Scholar
  45. Sleep, N. H., 1975. Formation of oceanic crust: some thermal constraints. Journal of Geophysical Research, 80, 4037–4042, doi:10.1029/JB080i029p04037.CrossRefGoogle Scholar
  46. Teagle, D. A. H., Ildefonse, B., Blum, P., and the Expedition 335 Scientists, 2012. Proceeding of the IODP. Integrated Ocean Drilling Program Management International, Inc., Tokyo, Vol. 335, doi:10.2204/iodp.proc.335.2012.Google Scholar
  47. Tucholke, B. E., Lin, J., and Kleinrock, M. C., 1998. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. Journal of Geophysical Research, 103, 9857–9866, doi:10.1029/98JB00167.CrossRefGoogle Scholar
  48. Wilson, D. S., Teagle, D. A. H., Alt, J. C., Banerjee, N. R., Umino, S., Miyashita, S., Acton, G. D., Anma, R., Barr, S. R., Belghoul, A., Carlut, J., Christie, D. M., Coggon, R. M., Cooper, K. M., Cordier, C., Crispini, L., Durand, S. R., Einaudi, F., Galli, L., Gao, Y. J., Geldmacher, J., Gilbert, L. A., Hayman, N. W., Herrero-Bervera, E., Hirano, N., Holter, S., Ingle, S., Jiang, S. J., Kalberkamp, U., Kerneklian, M., Koepke, J., Laverne, C., Vasquez, H. L. L., Maclennan, J., Morgan, S., Neo, N., Nichols, H. J., Park, S. H., Reichow, M. K., Sakuyama, T., Sano, T., Sandwell, R., Scheibner, B., Smith-Duque, C. E., Swift, S. A., Tartarotti, P., Tikku, A. A., Tominaga, M., Veloso, E. A., Yamasaki, T., Yamazaki, S., and Ziegler, C., 2006. Drilling to gabbro in intact ocean crust. Science, 312, 1016–1020, doi:10.1126/science.1126090.CrossRefGoogle Scholar
  49. Xu, M., Pablo Canales, J., Carbotte, S. M., Carton, H., Nedimović, M. R., and Mutter, J. C., 2014. Variations in axial magma lens properties along the East Pacific Rise (9°30′N-10°00′N) from swath 3-D seismic imaging and 1-D waveform inversion. Journal of Geophysical Research, 119, 2721–2744, doi:10.1002/2013JB010730.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Géosciences MontpellierCNRS and Université de MontpellierMontpellierFrance