Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Deep-Sea Sediments

  • Mitchell Lyle
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-94-007-6644-0_53-2

Synonyms

Definition

The term “deep-sea sediments” or the interchangeable term “pelagic sediments” refers to sediments that deposit slowly in the abyssal ocean beyond the continental margins.

What Are Deep-Sea Sediments?

Deep-sea sediments typically have sedimentation rates less than 30 m/106 years, and rates as low 0.1 m/106 years have been reported. The slow sedimentation rates and unusual sediment compositions reflect the low fluxes of aluminosilicates eroded from continents. The terrigenous material that does deposit is often windblown dust. Other solids produced through biological activity, through hydrothermal leaching of basalts, or even by earth’s bombardment by meteorites can make up large fractions of a deep-sea sediment deposit.

Not all sediments in the deep ocean are deep-sea sediments depositing slowly. A significant portion of the deep ocean is filled by turbidites, which are gravity flow deposits that typically originate from the continental margins....

Keywords

Continental Margin Biogenic Silica Early Diagenesis Sediment Movement Biogenic Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

I thank G. Ross Heath for his review of the manuscript. This study was supported in part by NSF grant OCE-0962184.

Bibliography

  1. Archer, D. E., 1996. A data-driven model of the global calcite lysocline. Global Biogeochemical Cycles, 10(3), 511–526.CrossRefGoogle Scholar
  2. Baker, E. T., and Urabe, T., 1996. Extensive distribution of hydrothermal plumes along the superfast spreading East Pacific Rise, 13°30′–18°40′S. Journal of Geophysical Research, Solid Earth, 101, 8685–8695.CrossRefGoogle Scholar
  3. Balistrieri, L., Brewer, P. G., and Murray, J. W., 1981. Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep Sea Research, 28A, 101–121.CrossRefGoogle Scholar
  4. Bastia, R., Das, S., and Radhakrishna, M., 2010. Pre- and post-collisional depositional history in the upper and middle Bengal fan and evaluation of deepwater reservoir potential along the northeast Continental Margin of India. Marine and Petroleum Geology, 27, 2051–2061.CrossRefGoogle Scholar
  5. Berger, W. H., 1970. Biogenous deep-sea sediments: fractionation by deep-sea circulation. Geological Society of America Bulletin, 81, 1385–1402.CrossRefGoogle Scholar
  6. Berger, W. H., 1973. Cenozoic sedimentation in the eastern tropical Pacific. Geological Society of America Bulletin, 84, 1941–1954.CrossRefGoogle Scholar
  7. Berger, W. H., Adelseck, C. G. J., and Mayer, L. A., 1976. Distribution of carbonate in surface sediments of the Pacific Ocean. Journal of Geophysical Research, 81, 2617–2627.CrossRefGoogle Scholar
  8. Bernat, M., and Church, T. M., 1978. Deep-sea phillipsites: trace geochemistry and mode of formation. In Sand, L. B., and Mumpton, F. A. (eds.), Natural Zeolites: Occurrence, Properties, Use. Oxford/New York: Pergamon Press, pp. 259–267.Google Scholar
  9. Biscaye, P. E., Kolla, V., and Turekian, K. K., 1976. Distribution of calcium carbonate in surface sediments of the Atlantic Ocean. Journal of Geophysical Research, 81, 2595–2603.CrossRefGoogle Scholar
  10. Biscaye, P. E., Anderson, R. F., and Deck, B. L., 1988. Fluxes of particles and constituents to the eastern United States continental slope and rise: SEEP-I. Continental Shelf Research, 8, 855–904.CrossRefGoogle Scholar
  11. Boström, K., and Peterson, M. N. A., 1966. Precipitation from hydrothermal exhalations on the East Pacific Rise. Economic Geology, 39, 1258–1265.CrossRefGoogle Scholar
  12. Boström, K., and Peterson, M. N. A., 1969. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 7, 427–447.CrossRefGoogle Scholar
  13. Boudreau, B. P., Middelburg, J. J., and Meysman, F. J. R., 2010. Carbonate compensation dynamics. Geophysical Research Letters, 37, L03603.CrossRefGoogle Scholar
  14. Brothers, D. S., ten Brink, U. S., Andrews, B. D., and Chaytor, J. D., 2013. Geomorphic characterization of the U.S. Atlantic continental margin. Marine Geology, 338, 46–63.CrossRefGoogle Scholar
  15. Burckle, L. H., and Cirilli, J., 1987. Origin of diatom ooze belt in the Southern Ocean: implications for late quaternary paleoceanography. Micropaleontology, 33, 82–86.CrossRefGoogle Scholar
  16. Calvert, S. E., and Pedersen, T. F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113, 67–88.CrossRefGoogle Scholar
  17. Caress, D. W., and Chayes, D. N., 1996. Improved processing of Hydrosweep DS multibeam data on the R/V Maurice Ewing. Marine Geophysical Research, 18, 631–650.CrossRefGoogle Scholar
  18. Clift, P., and Gaedicke, C., 2002. Accelerated mass flux to the Arabian Sea during the middle to late Miocene. Geology, 30, 207–210.CrossRefGoogle Scholar
  19. CLIMAP Project Members, 1976. The surface of the ice-age earth. Science, 191, 1131–1137.CrossRefGoogle Scholar
  20. Cole, T. G., and Shaw, H. F., 1983. The nature and origin of authigenic smectites in some recent marine sediments. Clay Minerals, 18, 239–552.CrossRefGoogle Scholar
  21. Damuth, J. E., 1977. Late quaternary sedimentation in the western equatorial Atlantic. Geological Society of America Bulletin, 88, 695–710.CrossRefGoogle Scholar
  22. Dehairs, F., Chesselet, R., and Jedwab, J., 1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters, 49, 528–550.CrossRefGoogle Scholar
  23. Dekens, P. S., Ravelo, A. C., and McCarthy, M. D., 2007. Warm upwelling regions in the Pliocene warm period. Paleoceanography, 22, PA3211, p. 12.Google Scholar
  24. Drexler, J. W., Rose, W. I., Jr., Sparks, R. S. J., and Ledbetter, M. T., 1980. The Los Chocoyos Ash, Guatemala: a major stratigraphic marker in middle America and in three ocean basins. Quaternary Research, 13, 327–345.CrossRefGoogle Scholar
  25. Duce, R. A., et al., 2011. Scientific Ocean Drilling: Accomplishments and Challenges. Washington, DC: National Academy, p. 146.Google Scholar
  26. Duggen, S., Olgun, N., Croot, P., Hoffmann, L., Dietze, H., Delmelle, P., and Teschner, C., 2010. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences, 7, 827–844.CrossRefGoogle Scholar
  27. Dymond, J., 1981. Geochemistry of Nazca plate surface sediments: an evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources. Geological Society of American Memoir, 154, 133–173.CrossRefGoogle Scholar
  28. Dymond, J., and Lyle, M., 1994. Particle fluxes in the ocean and implications for sources and preservation of ocean sediments. In Hay, W. W., et al. (eds.), Material Fluxes on the Surface of the Earth. Washington, DC: National Academy, pp. 125–143.Google Scholar
  29. Dymond, J., Lyle, M., Finney, B., Piper, D. Z., Murphy, K., Conard, R., and Pisias, N., 1984. Ferromanganese nodules from MANOP Sites H, S, and R; control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta, 48, 931–949.CrossRefGoogle Scholar
  30. Dymond, J., Suess, E., and Lyle, M., 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7, 163–181.CrossRefGoogle Scholar
  31. Expedition 320/321 Scientists, 2010. Site U1335. In Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists (eds.), Proceedings of the IODP, 320/321. Tokyo: Integrated Ocean Drilling Program Management International, doi:10.2204/iodp.proc.320321.107.2010.Google Scholar
  32. Finney, B. P., Lyle, M. W., and Heath, G. R., 1988. Sedimentation at MANOP Site H (eastern equatorial Pacific) over the past 400,000 years: climatically induced redox variations and their effects on transition metal cycling. Paleoceanography, 3, 169–189.CrossRefGoogle Scholar
  33. Fischer, K., Dymond, J., Lyle, M., Soutar, A., and Rau, S., 1986. The benthic cycle of copper; evidence from sediment trap experiments in the eastern tropical North Pacific Ocean. Geochimica et Cosmochimica Acta, 50, 1535–1543.CrossRefGoogle Scholar
  34. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1090.CrossRefGoogle Scholar
  35. Glasby, G. P., 2006. Manganese: predominant role of nodules and crusts. In Schuz, H. D., and Zabel, M., (eds.), Marine Geochemistry, 2nd rev. Berlin/Heidelberg: Springer, pp. 371–427.Google Scholar
  36. Goldberg, E. D., 1954. Marine geochemistry 1. Chemical scavengers of the sea. Journal of Geology, 62, 249–265.CrossRefGoogle Scholar
  37. Gorsline, D. S., Kolpack, R. L., Karl, H. A., Drake, D. E., Fleischer, P., Thornton, S. E., Schwalbach, J. R., and Savrda, C. E., 1984. Studies of fine-grained sediment transport processes and products in the California Continental Borderland. Geological Society of London Special Publications, 15, 395–415.CrossRefGoogle Scholar
  38. Griffith, E. M., and Paytan, A., 2012. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications. Sedimentology, 59, 1817–1835.CrossRefGoogle Scholar
  39. Haymon, R. M., 2005. TECTONICS/hydrothermal vents at mid-ocean ridges. In Selley, R. C., Cocks, L. R. M., and Plimer, I. R. (eds.), Encyclopedia of Geology. Oxford: Elsevier, pp. 388–395, doi:10.1016/B0-12-369396-9/00448-2.CrossRefGoogle Scholar
  40. Hays, J. D., Imbrie, J., and Shackelton, N. J., 1976. Variations in the earth’s orbit: pacemaker of the ice ages. Science, 194, 1121–1131.CrossRefGoogle Scholar
  41. Heath, G. R., 1981. Ferromanganese nodules of the deep sea. Economic Geology, 75, 736–756.Google Scholar
  42. Hodell, D. A., Charles, C. D., and Sierro, F. J., 2001. Late Pleistocene evolution of the ocean’s carbonate system. Earth and Planetary Science Letters, 192, 109–124.CrossRefGoogle Scholar
  43. Honda, M. C., Imai, K., Nojiri, Y., Hoshi, F., Sugawara, T., and Kusakabe, M., 2002. The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment-trap experiments, 1997-2000. Deep Sea Research II, 49, 5595–5625.CrossRefGoogle Scholar
  44. Karlin, R., 1980. Sediment sources and clay mineral distributions off the Oregon coast. Journal of Sedimentary Petrology, 50, 543–560.Google Scholar
  45. Kelley, D. S., Baross, J. A., and Delaney, J. R., 2002. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annual Reviews of Earth and Planetary Science, 30, 385–491.CrossRefGoogle Scholar
  46. Kennett, J. P., 1982. Marine Geology. Englewood Cliffs: Prentice-Hall, p. 813.Google Scholar
  47. Krissek, L. A., 1984. Continental source area contributions to fine-grained sediments on the Oregon and Washington continental slope. Geological Society of London Special Publications, 15, 363–375.CrossRefGoogle Scholar
  48. Kyte, F. T., 2002. Tracers of the extraterrestrial component in sediments and inferences for Earth’s accretion history. Geological Society of America Special Papers, 356, 21–38.Google Scholar
  49. Le, J., and Shackleton, N. J., 1994. Reconstructing paleoenvironment by transfer function: model evaluation with simulated data. Marine Micropaleontology, 24, 187–189.CrossRefGoogle Scholar
  50. Leinen, M., Cwienk, D., Heath, G. R., Biscaye, P., Kolla, V., Thiede, J., and Dauphin, J. P., 1986. Distribution of biogenic silica and quartz in recent deep-sea sediments. Geology, 14, 199–203.CrossRefGoogle Scholar
  51. Lipps, J. H., 1993. Fossil Prokaryotes and Protists. Oxford: Blackwell Scientific, p. 342.Google Scholar
  52. Lisiecki, L. E., and Raymo, M. E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20, PA1003.Google Scholar
  53. Lisitzin, A. P., 1972. Sedimentation in the world ocean. SEPM Special Publication, 17, 218.Google Scholar
  54. Lyle, M., 1981. Formation and growth of ferromanganese oxides on the Nazca Plate. Geological Society of American Memoir, 154, 269–294.CrossRefGoogle Scholar
  55. Lyle, M., Heath, G. R., and Robbins, J. M., 1984. Transport and release of transition elements during early diagenesis: sequential leaching of sediments from MANOP sites M and H. Part I. pH 5 acetic acid leach. Geochimica et Cosmochimica Acta, 48, 1705–1715.CrossRefGoogle Scholar
  56. Lyle, M., Leinen, M., Owen, R. M., and Rea, D. K., 1987. Late Tertiary history of hydrothermal deposition at the East Pacific Rise, 19° S; correlation to volcano-tectonic events. Geophysical Research Letters, 14, 595–598.CrossRefGoogle Scholar
  57. Lyle, M., Pälike, H., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and Expedition 320/321 Scientific Party, 2010. The Pacific equatorial age transect, IODP expeditions 320 and 321: building a 50-million-year-long environmental record of the equatorial Pacific Ocean. Scientific Drilling, 9, 4–15.CrossRefGoogle Scholar
  58. Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P. P., and Balkanski, Y., 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews, 99, 61–97.CrossRefGoogle Scholar
  59. Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S. P., Prentice, I. C., Schulz, M., and Rodhe, H., 1999. Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research, Atmosphere, 104, 15895–15916.CrossRefGoogle Scholar
  60. Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender, C. S., and Luo, C., 2006. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research, Atmosphere, 111, D10202, p. 22.Google Scholar
  61. Marcantonio, F., Anderson, R. F., Stute, M., Kumar, N., Schlosser, P., and Mix, A., 1996. Extraterrestrial 3-He as a tracer of marine sediment transport and accumulation. Nature, 383, 705–707.CrossRefGoogle Scholar
  62. Martin, J. H., 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography, 5(1), 1–13.CrossRefGoogle Scholar
  63. Mayer, L. A., 1979. The origin of fine scale acoustic stratigraphy in deep-sea carbonates. Journal of Geophysical Research, 84, 6177–6184.CrossRefGoogle Scholar
  64. Mayer, L. A., Shipley, T. H., and Winterer, E. L., 1986. Equatorial Pacific seismic reflectors as indicators of global oceanographic events. Science, 233, 761–764.CrossRefGoogle Scholar
  65. McCave, I. N., 2010. Nepheloid layers. In Steele, J. H., Thorpe, S. A., and Turekian, K. K. (eds.), Marine Ecological Processes: A Derivative of the Encyclopedia of Ocean Sciences. London: Academic, pp. 1861–1870.Google Scholar
  66. Menard, H. W., 1964. Marine Geology of the Pacific. New York: McGraw-Hill, p. 271.Google Scholar
  67. Moore, T. C., Jr., Jarrard, R. D., Olivarez Lyle, A., and Lyle, M., 2008. Eocene biogenic silica accumulation rates at the Pacific equatorial divergence zone. Paleoceanography, 23, PA2202, p. 22.Google Scholar
  68. Morford, J. L., and Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63, 1735–1750.CrossRefGoogle Scholar
  69. Mosher, D. C., 2011. Cautionary considerations for geohazard mapping with multibeam sonar: resolution and the need for third and fourth dimensions. Marine Geophysical Research, 32, 25–35.CrossRefGoogle Scholar
  70. Müller, P. J., and Suess, E., 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans -I. Organic carbon preservation. Deep-Sea Research, 26A, 1347–1362.CrossRefGoogle Scholar
  71. Olivarez Lyle, A., and Lyle, M., 2006. Organic carbon and barium in Eocene sediments: is metabolism the biological feedback that maintains end-member climates? Paleoceanography, 21, 1–13, doi:10.1029/2005PA001230.CrossRefGoogle Scholar
  72. Olivarez, A. M., Owen, R. M., and Rea, D. K., 1991. Geochemistry of eolian dust in pacific pelagic sediments: implications for paleoclimatic interpretations. Geochimica et Cosmochimica Acta, 55, 2147–2158.CrossRefGoogle Scholar
  73. Pälike, H., and Expedition 320/321 Shipboard Scientists, 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 488, 609–614.CrossRefGoogle Scholar
  74. Paytan, A., and Griffith, E. M., 2007. Marine barite: recorder of variations in ocean export productivity. Deep Sea Research II, 54, 687–705.CrossRefGoogle Scholar
  75. Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A., 2001. Warm tropical sea surface temperatures in the late Cretaceous and Eocene epochs. Nature, 413, 481–487.CrossRefGoogle Scholar
  76. Pedersen, T. F., and Calvert, S. E., 1990. Anoxia versus productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists Bulletin, 74, 454–466.Google Scholar
  77. Ragueneau, O., Tréguer, P., Anderson, R. F., Brzezinski, M. A., DeMaster, D. J., Dugdale, R. C., Dymond, J., Fischer, G., François, R., Heinze, C., Leynaert, A., Maier-Reimer, E., Martin-Jézéquel, V., Nelson, D. M., and Quéguiner, B., 2000. A review of the Si cycle in the modern ocean; recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26, 317–365.CrossRefGoogle Scholar
  78. Rea, D. K., 1994. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Reviews of Geophysics, 32, 159–195.CrossRefGoogle Scholar
  79. Rea, D. K., et al., 2006. Broad region of no sediment in the Southwest Pacific Basin. Geology, 34, 873–876.CrossRefGoogle Scholar
  80. Riedel, W. R., 1967. Radiolarian evidence consistent with spreading of the pacific floor. Science, 157, 540–542.CrossRefGoogle Scholar
  81. Ruddiman, W. F., 1972. Sediment redistribution on the Reykjanes Ridge: seismic evidence. Geological Society of America Bulletin, 83, 2039–2062.CrossRefGoogle Scholar
  82. Ruhlin, D. E., and Owen, R. M., 1986. The rare earth geochemistry of hydrothermal sediments from the East Pacific Rise: examination of a seawater scavenging mechanism. Geochimica et Cosmochimica Acta, 50, 393–400.CrossRefGoogle Scholar
  83. Sacchetti, F., Benetti, S., Quinn, R., and Cofaigh, C. O., 2013. Glacial and post-glacial sedimentary processes in the Irish Rockall Trough from an integrated acoustic analysis of near-seabed sediments. Geo-Marine Letters, 33, 49–66.CrossRefGoogle Scholar
  84. Scheidegger, K. F., Corliss, J. B., Jezek, P. A., and Ninkovich, D., 1980. Compositions of deep-sea ash layers derived from North Pacific volcanic arcs: variations in time and space. Journal of Volcanology and Geothermal Research, 7, 107–137.CrossRefGoogle Scholar
  85. Stonecipher, S. A., 1976. Origin, distribution, and diagenesis of phillipsite and clinoptilolite in deep-sea sediments. Chemical Geology, 17, 307–318.CrossRefGoogle Scholar
  86. Tominaga, M., Lyle, M., and Mitchell, N. C., 2011. Seismic interpretation of pelagic sedimentation regimes in the 18-53 Ma eastern equatorial Pacific: basin-scale sedimentation and infilling of abyssal valleys. Geochemistry, Geophysics, Geosystems, 12, Q03004, p. 22.Google Scholar
  87. Torres, M. E., McManus, J., and Huh, C.-A., 2002. Fluid seepage along the San Clemente Fault scarp: basin-wide impact on barium cycling. Earth and Planetary Science Letters, 203, 181–194.CrossRefGoogle Scholar
  88. van Andel, T. H., and Moore, T. C., Jr., 1974. Cenozoic calcium carbonate distribution and calcite compensation depth in the central equatorial Pacific Ocean. Geology, 2, 87–92.CrossRefGoogle Scholar
  89. Walsh, I., Fischer, K., Murray, D., and Dymond, J., 1988. Evidence for resuspension of rebound particles from near-bottom sediment traps. Deep Sea Research, 35, 59–70.CrossRefGoogle Scholar
  90. Wheat, C. G., Feeley, R. A., and Mottl, M. J., 1996. Phosphate removal by oceanic hydrothermal processes: an update of the phosphorus budget of the oceans. Geochimica et Cosmochimica Acta, 60, 3593–3608.CrossRefGoogle Scholar
  91. Whittaker, J., Goncharov, A., Williams, S., Müller, R. D., and Leitchenkov, G., 2013. Global sediment thickness dataset updated for the Australian-Antarctic Southern Ocean, Geochemistry, Geophysics. Geosystems, 14, 3297–3305, doi:10.1002/ggge.20181.Google Scholar
  92. Williams, D. L., and Von Herzen, R. P., 1974. Heat loss from the earth: new estimate. Geology, 2, 327–328.CrossRefGoogle Scholar
  93. Zaric, S., Donner, B., Fischer, G., Mulitza, S., and Wefer, G., 2005. Sensitivity of planktonic foraminifer to sea surface temperature and export production as derived from sediment trap data. Marine Micropaleontology, 55, 75–105.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of OceanographyTexas A&M UniversityCollege StationUSA
  2. 2.College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA