Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Oceanic Plateaus

  • Andrew C. KerrEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_21-1

Definition

Oceanic plateaus are large areas of elevated, over-thickened basaltic ocean floor (>5 × 105 km3) which have formed throughout most of Earth’s history, and, unlike most oceanic crust, they are not primarily the result of seafloor spreading processes and melting of ambient upper mantle but rather are widely regarded to have been formed by decompression melting of hot mantle plumes (Kerr, 2014).

Introduction

The vast erupted and intruded volume of oceanic plateaus means that they are classed as large igneous provinces (LIPs), along with continental flood basalts and volcanic rifted margins. The term large igneous provinces was originally proposed by Coffin and Eldholm ( 1992) as a generic term for igneous provinces with a volume exceeding 0.1 × 10 6 km 2 (see also Coffin and Eldholm 2005). More recently, this definition has been revised by Bryan and Ernst ( 2008), who proposed a classification scheme that includes giant radiating dike swarms and silicic LIPs. Bryan and Ernst’s...

Keywords

Oceanic Crust Black Shale Mantle Plume Greenstone Belt Large Igneous Province 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Abbott, D., and Mooney, W., 1995. The structural and geochemical evolution of the continental crust: support for the oceanic plateau model of continental growth. Reviews of Geophysics, 33(Supplement), 231–242.CrossRefGoogle Scholar
  2. Bond, D. P. G., and Wignall, P. B., 2014. Large igneous provinces and mass extinctions: an update. In Keller, G., and Kerr, A. C. (eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Boulder: Geological Society of America. Geological Society of America Special Paper, 505, pp. 29–55, doi:10.1130/2014.2505(02).Google Scholar
  3. Borissova, I., Coffin, M. F., Charvis, P., and Operto, S., 2003. Structure and development of a microcontinent: Elan Bank in the southern Indian Ocean. Geochemistry, Geophysics, Geosystems, 4, 1071, doi:10.1029/2003GC000535, 9.CrossRefGoogle Scholar
  4. Bryan, S. E., and Ernst, R. E., 2008. Revised definition of Large Igneous Provinces (LIPs). Earth Science Reviews, 86, 175–202.CrossRefGoogle Scholar
  5. Campbell, I. H., 2007. Testing the plume theory. Chemical Geology, 241, 153–176.CrossRefGoogle Scholar
  6. Chavagnac, V., 2004. A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos, 75, 253–281.CrossRefGoogle Scholar
  7. Cloos, M., 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin, 105, 715–737.CrossRefGoogle Scholar
  8. Coffin, M. F., and Eldholm, O., 1992. Volcanism and continental break-up: a global compilation of large igneous provinces. In Storey, B. C., Alabaster, T., and Pankhurst, R. J. (eds.), Magmatism and the Causes of Continental Breakup. London: Geological Society of London. Special publication, pp. 17–30.Google Scholar
  9. Coffin, M. F., and Eldholm, O., 2005. Large igneous provinces. In Selley, R. C., Cocks, R., and Plimer, I. R. (eds.), Encyclopedia of Geology. Oxford: Elsevier, pp. 315–323.CrossRefGoogle Scholar
  10. Condie, K. C., Marais, D. J. D., and Abbott, D., 2001. Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precambrian Research, 106, 239–260.CrossRefGoogle Scholar
  11. Donnelly, T. W., 1973. Late Cretaceous basalts from the Caribbean, a possible flood basalt province of vast size. Eos, 54, 1004.Google Scholar
  12. Duncan, R. A., 2002. A time frame for construction of the Kerguelen Plateau and Broken Ridge. Journal of Petrology, 43, 1109–1119.CrossRefGoogle Scholar
  13. Ernst, R. E., and Buchan, K. L., 2001. Large mafic magmatic events through time and links to mantle plume heads. In Ernst, R. E., and Buchan, K. L. (eds.), Mantle Plumes: Their Identification Through Time. Boulder: Geological Society of America. Geological Society of America, Special Paper, 352, pp. 483–575.CrossRefGoogle Scholar
  14. Farnetani, C. G., and Richards, M. A., 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research – Solid Earth, 99(B7), 13813–13833.CrossRefGoogle Scholar
  15. Fitton, J. G., and Godard, M., 2004. Origin and evolution of magmas on the Ontong Java Plateau. In Fitton, J. G., Mahoney, J. J., Wallace, P. J., and Saunders, A. D. (eds.), Origin and Evolution of the Ontong Java Plateau. London: Geological Society. Geological Society of London, Special publication, 229, pp. 151–178.Google Scholar
  16. Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., and Beerling, D. J., 2008. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geoscience, 1, 43–48.CrossRefGoogle Scholar
  17. Frey, F. A., Coffin, M. F., Wallace, P. J., and Weis, D., 2003. Leg 183 synthesis: Kerguelen plateau-broken ridge-a large igneous province. Proceedings of the Ocean Drilling Program, Scientific Results, 183, 1–48.Google Scholar
  18. Frey, F. A., Weis, D., Borisova, A.Y., and Xu, G., 2002, Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: New perspectives from ODP Leg 120 sites: Journal of Petrology, v. 43, p. 1207–1239.Google Scholar
  19. Greene, A. R., Scoates, J. S., and Weis, D., 2008. Wrangellia flood basalts in Alaska: a record of plume-lithosphere interaction in a Late Triassic accreted oceanic plateau. Geochemistry, Geophysics, Geosystems, 9(12), Q12004, doi:10.1029/2008GC002092.CrossRefGoogle Scholar
  20. Greene, A. R., Scoates, J. S., Weis, D., and Israel, S., 2009a. Geochemistry of Triassic flood basalts from the Yukon (Canada) segment of the accreted Wrangellia oceanic plateau. Lithos, 110, 1–19.CrossRefGoogle Scholar
  21. Greene, A. R., Scoates, J. S., Weis, D., Nixon, G. T., and Kieffer, B., 2009b. Melting history and magmatic evolution of basalts and picrites from the accreted Wrangellia oceanic plateau, Vancouver Island, Canada. Journal of Petrology, 50, 467–505.CrossRefGoogle Scholar
  22. Haq, B. U., Hardenbol, J., and Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.CrossRefGoogle Scholar
  23. Herzberg, C., 2004. Partial melting below the Ontong Java Plateau. In Fitton, J. G., Mahoney, J. J., Wallace, P. J., and Saunders, A. D. (eds.), Origin and Evolution of the Ontong Java Plateau. London: Geological Society. Geological Society of London, Special publication, 229, pp. 179–184.Google Scholar
  24. Herzberg, C., and Gazel, E., 2009. Petrological evidence for secular cooling in mantle plumes. Nature, 458, 619–622.CrossRefGoogle Scholar
  25. Heydolph, K., Murphy, D. T., Geldmacher, J., Romanova, I. V., Greene, A., Hoernle, K., Weis, D., and Mahoney, J., 2014. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): insights from Nd, Pb and Hf isotopes. Lithos, 200, 49–63.CrossRefGoogle Scholar
  26. Ichiyama, Y., Ishiwatari, A., and Koizumi, K., 2008. Petrogenesis of greenstones from the Mino-Tamba belt, SW Japan: evidence for an accreted Permian oceanic plateau. Lithos, 100, 127–146.CrossRefGoogle Scholar
  27. Ichiyama, Y., Ishiwatari, A., Kimura, J.-I., Senda, R., Kawabata, H., and Tatsumi, Y., 2012. Picrites in central Hokkaido: evidence of extremely high temperature magmatism in the Late Jurassic ocean recorded in an accreted oceanic plateau. Geology, 40, 411–414.CrossRefGoogle Scholar
  28. Ichiyama, Y., Ishiwatari, A., Kimura, J.-I., Senda, R., and Miyamoto, T., 2014. Jurassic plume-origin ophiolites in Japan: accreted fragments of oceanic plateaus. Contributions to Mineralogy and Petrology, 168, 1–24.CrossRefGoogle Scholar
  29. Jahren, A. H., Conrad, C. P., Arens, N. C., Mora, G., and Lithgow-Bertelloni, C., 2005. A plate tectonic mechanism for methane hydrate release along subduction zones. Earth and Planetary Science Letters, 236, 691–704.CrossRefGoogle Scholar
  30. Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C., and Pearce, M. A., 2011. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography, 26, PA3201, doi:10.1029/2010PA002081.CrossRefGoogle Scholar
  31. Kerr, A. C., 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary. Journal of the Geological Society (London), 155, 619–626.CrossRefGoogle Scholar
  32. Kerr, A. C., 2003. Oceanic plateaus. In Rudinck, R. L. (ed.), The Crust. Treatise on Geochemistry (Holland, H. G., Turekian, K. K. (eds.)). Oxford: Elsevier-Pergamon, Vol. 3, pp. 537–566.Google Scholar
  33. Kerr, A. C., 2005. Oceanic LIPs: the kiss of death. Elements, 1, 289–292.CrossRefGoogle Scholar
  34. Kerr, A. C. 2014. Oceanic plateaus. In: Rudnick, R. (ed.), The Crust. Chapter 18. Treatise on Geochemistry, 2nd edn (Holland, H. C., and Turekian, K. (Series eds.)). Elsevier, Amsterdam, Vol. 4, pp. 631–667.Google Scholar
  35. Kerr, A. C., and Mahoney, J. J., 2007. Oceanic plateaus: problematic plumes, potential paradigms. Chemical Geology, 241, 332–353.CrossRefGoogle Scholar
  36. Kerr, A. C., and Tarney, J., 2005. Tectonic evolution of the Caribbean and northwestern South America: the case for accretion of two Late Cretaceous oceanic plateaus. Geology, 33, 269–272.CrossRefGoogle Scholar
  37. Kerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., and Saunders, A. D., 1997. The Caribbean-Colombian Cretaceous igneous province: the internal anatomy of an oceanic plateau. In Mahoney, J. J., and Coffin, M. (eds.), Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. Washington, DC: American Geophysical Union. American Geophysical Union Monograph, 100, pp. 45–93.Google Scholar
  38. Kerr, A. C., White, R. V., and Saunders, A. D., 2000. LIP reading: recognizing oceanic plateaux in the geological record. Journal of Petrology, 41, 1041–1056.CrossRefGoogle Scholar
  39. Kerr, A. C., White, R. V., Thompson, P. M. E., Tarney, J., and Saunders, A. D., 2003. No oceanic plateau – no Caribbean plate? The seminal role of an oceanic plateau in Caribbean plate evolution. In Bartolini, C., Buffler, R. T., and Blickwede, J. (eds.), The Gulf of Mexico and Caribbean Region: Hydrocarbon Habitats, Basin Formation and Plate Tectonics. Tulsa: AAPG. Memoir, 79, pp. 126–168.Google Scholar
  40. Kimura, G., Sakakibara, M., and Okamura, M., 1994. Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan. Tectonics, 13(4), 905–916.CrossRefGoogle Scholar
  41. Kroenke, L. W., 1974. Origin of continents through development and coalescence of oceanic flood basalt plateaus. Eos, 55, 443.Google Scholar
  42. Kuroda, J., Ogawa, N. O., Tanimizu, M., Coffin, M. F., Tokuyama, H., Kitazato, H., and Ohkouchi, N., 2007. Contemporaneous massive subaerial volcanism and late Cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 256, 211–223.CrossRefGoogle Scholar
  43. Miura, S., Suyehiro, K., Shinohara, M., Takahashi, N., Araki, E., and Taira, A., 2004. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer-airgun data. Tectonophysics, 389, 191–220.CrossRefGoogle Scholar
  44. Petterson, M. G., Neal, C. R., Mahoney, J. J., Kroenke, L. W., Saunders, A. D., Babbs, T. L., Duncan, R. A., Tolia, D., and McGrail, B., 1997. Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau Solomon arc collision, and for the fate of oceanic plateaus. Tectonophysics, 283, 1–33.CrossRefGoogle Scholar
  45. Raup, D. M., and Sepkoski, J. J., 1986. Periodic extinction of families and genera. Science, 231, 833–836.CrossRefGoogle Scholar
  46. Richardson, W. P., Okal, E. A., and VanderLee, S., 2000. Rayleigh-wave tomography of the Ontong-Java Plateau. Physics of the Earth and Planetary Interiors, 118, 29–51.CrossRefGoogle Scholar
  47. Snow, L. J., Duncan, R. A., and Bralower, T. J., 2005. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography, 20(4), PA3005, doi:10.1029/2004PA001093.CrossRefGoogle Scholar
  48. Tatsumi, Y., Kani, T., Ishizuka, H., Maruyama, S., and Nishimura, Y., 2000. Activation of Pacific mantle plumes during the Carboniferous: evidence from accretionary complexes in southwest Japan. Geology, 28, 580–582.CrossRefGoogle Scholar
  49. Tejada, M. L. G., Mahoney, J. J., Neal, C. R., Duncan, R. A., and Petterson, M. G., 2002. Basement geochemistry and geochronology of central Malaita, Solomon islands, with implications for the origin and evolution of the Ontong Java Plateau. Journal of Petrology, 43, 449–484.CrossRefGoogle Scholar
  50. Tejada, M. L. G., Mahoney, J. J., Castillo, P. R., Ingle, S. P., Sheth, H. C., and Weis, D., 2004. Pin-pricking the elephant: evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts. In Fitton, J. G., Mahoney, J. J., Wallace, P. J., and Saunders, A. D. (eds.), Origin and Evolution of the Ontong Java Plateau. London: Geological Society. Geological Society of London, Special publication, 229, pp. 133–150.Google Scholar
  51. Tetreault, J. L., and Buiter, S. J. H., 2012. Geodynamic models of terrane accretion: testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. Journal of Geophysical Research, 117(B8), B08403, doi:10.1029/2012JB009316.CrossRefGoogle Scholar
  52. Wessel, P., and Kroenke, L. W., 2000. Ontong Java Plateau and Late Neogene changes in Pacific plate motion. Journal of Geophysical Research, 105, 28255–28278.CrossRefGoogle Scholar
  53. Wignall, P. B., 1994. Black Shales. Oxford: Oxford University Press. Geology and Geophysics Monographs, 30. 130pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Earth and Ocean SciencesCardiff UniversityCardiffUK