Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Intraplate Magmatism

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_19-1

Definition

Intraplate magmatism constitutes igneous activity distal from the boundaries of the tectonic plates and is thus considered to be unrelated to the processes of seafloor spreading, subduction, and transform faulting.

Introduction

Intraplate magmatism is pervasive within both oceanic and continental crust. Expansive spatially and across geologic time, it is complex because of both its causative magmatic processes as well as its interplay with Earth’s mantle geodynamics and plate tectonic processes. The scale of intraplate magmatism ranges from large igneous provinces (LIPs) encompassing millions of cubic kilometers of igneous rock to small individual volcanoes. Similarly, compositions of intraplate igneous rock span the spectrum of extrusive compositions between highly mafic and highly silicic. However, intraplate volcanic rocks are dominantly basaltic and have compositions distinctly different from those found at “normal” mid-ocean ridges and in arc-trench systems. Herein we...

Keywords

Plate Boundary Mantle Plume Flood Basalt Large Igneous Province Oceanic Plateau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Abbott, D. H., and Isley, A. E., 2002. Extraterrestrial influences on mantle plumes. Earth and Planetary Science Letters, 205, 53–62.CrossRefGoogle Scholar
  2. Albarède, F., Luais, B., Fitton, G., Semet, M., Kaminski, E., Upton, B. G. J., Bachèlery, P., and Cheminée, J.-L., 1997. The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530,000 years. Journal of Petrology, 38(2), 171–201.CrossRefGoogle Scholar
  3. Anderson, D. L., 1995. Lithosphere, asthenosphere, and perisphere. Reviews of Geophysics, 33, 125–149.CrossRefGoogle Scholar
  4. Anderson, D. L., 1998. The scales of mantle convection. Tectonophysics, 284, 1–17.CrossRefGoogle Scholar
  5. Antretter, M., Riisager, P., Hall, S., Zhao, X., and Steinberger, B., 2004. Modelled paleolatitudes for the Louisville hot spot and the Ontong Java Plateau. In Fitton, J. G., Mahoney, J. J., Wallace, P. J., and Saunders, A. D. (eds.), Origin and Evolution of the Ontong Java Plateau. London: Geological Society. Special publication, 229, pp. 21–30.Google Scholar
  6. Barling, J., Goldstein, S. L., and Nicholls, I. A., 1994. Geochemistry of Heard Island (southern Indian Ocean): characterization of an enriched mantle component and implications for enrichment of sub-Indian ocean mantle. Journal of Petrology, 35(4), 1017–1053.CrossRefGoogle Scholar
  7. Bercovici, D., and Mahoney, J., 1994. Double flood basalts and plume head separation at the 660-kilometer discontinuity. Science, 266, 1367–1369.CrossRefGoogle Scholar
  8. Campbell, I. H., 2005. Large igneous provinces and the mantle plume hypothesis. Elements, 1, 265–269.CrossRefGoogle Scholar
  9. Campbell, I. H., and Griffiths, R. W., 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99, 79–93.CrossRefGoogle Scholar
  10. Chandler, M. T., Wessel, P., Taylor, B., Seton, M., Kim, S.-S., and Hyeong, K., 2012. Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander. Earth and Planetary Science Letters, 331–332, 140–151.CrossRefGoogle Scholar
  11. Clague, D. A., and Dalrymple, G. B., 1987. The Hawaiian-Emperor volcanic chain, Part 1: geological evolution. United States Geological Survey Professional Paper, 1350–1, 5–54.Google Scholar
  12. Clouard, V., and Bonneville, A., 2001. How many Pacific hotspots are fed by deep-mantle plumes? Geology, 29, 695–698.CrossRefGoogle Scholar
  13. Coffin, M. F., and Eldholm, O., 1994. Large igneous provinces: crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32, 1–36.CrossRefGoogle Scholar
  14. Courtillot, V., Davaille, A., Besse, J., and Stock, J., 2003. Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters, 205, 295–308.CrossRefGoogle Scholar
  15. Davaille, A., Girard, F., and Le Bars, M., 2002. How to anchor hotspots in a convecting mantle? Earth and Planetary Science Letters, 203, 621–634.CrossRefGoogle Scholar
  16. Davaille, A., Le Bars, M., and Carbonne, C., 2003. Thermal convection in a heterogeneous mantle. Comptes Rendus Geoscience, 335, 141–156.CrossRefGoogle Scholar
  17. Davaille, A., Stutzmann, E., Silveira, G., Besse, J., and Courtillot, V., 2005. Convective patterns under the Indo-Atlantic <<box>> Earth and Planetary Science Letters, 239, 233–252.CrossRefGoogle Scholar
  18. DeMets, C., Gordon, R. G., and Argus, D. F., 2010. Geologically current plate motions. Geophysical Journal International, 181, 1–80, doi:10.1111/j.1365-246X2009.04491.x.CrossRefGoogle Scholar
  19. Duncan, R. A., and Hargraves, R. B., 1984. Plate tectonic evolution of the Caribbean region in the mantle reference frame. In Bonini, W. E., Hargraves, R. B., and Shagam, R. (eds.), The Caribbean-South American Plate Boundary and Regional Tectonics. Geological Society of America Memoir, Geological Society of America, Denver, Colorado, USA, Vol. 162, pp. 81–93.Google Scholar
  20. Duncan, R.A., and Richards, M.A., 1991. Hotspots, mantle plumes, flood basalts, and true polar wander. Reviews of Geophysics, 29, 31–50.CrossRefGoogle Scholar
  21. Eldholm, O., and Coffin, M. F., 2000. Large igneous provinces and plate tectonics. In Richards, M. A., Gordon, R. G., and van der Hilst, R. D. (eds.), The History and Dynamics of Global Plate Motions. American Geophysical Union Geophysical Monograph, American Geophysical Union, Washington, DC, USA, Vol. 121, pp. 309–326.Google Scholar
  22. Farnetani, C. G., and Richards, M. A., 1994. Numerical investigations of the mantle plume initiation model for flood basalt events. Journal of Geophysical Research, 99(B7), 13813–13833.CrossRefGoogle Scholar
  23. Farnetani, C.G., and Samuel, H., 2005. Beyond the thermal plume paradigm. Geophysical Research Letters, 32, doi: 10.1029/2005GL022360Google Scholar
  24. Fitton, J. G., Mahoney, J. J., Wallace, P. J., and Saunders, A. D., 2004. Origin and evolution of the Ontong Java Plateau: introduction. In Fitton, J. G., Mahoney, J. J., Wallace, P. J., and Saunders, A. D. (eds.), Origin and Evolution of the Ontong Java Plateau. London: Geological Society. Special publication, 229, pp. 1–8.Google Scholar
  25. Foulger, G.R., 2007. The “plate” model for the genesis of melting anomalies. In Foulger, G. R., and Jurdy, D. M. (eds.), Plates, Plumes, and Planetary Processes. Geological Society of America Special paper, Geological Society of America, Denver, Colorado, USA, 430, 1–28Google Scholar
  26. Glikson, A. Y., 1999. Oceanic mega-impacts and crustal evolution. Geology, 27(5), 387–390.CrossRefGoogle Scholar
  27. Griffiths, R. W., and Campbell, I. H., 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99, 66–78.CrossRefGoogle Scholar
  28. Griffiths, R. W., and Campbell, I. H., 1991. Interaction of mantle plume heads with the Earth’s surface and onset of small-scale convection. Journal of Geophysical Research, 96(B11), 18295–18310.CrossRefGoogle Scholar
  29. Hirano, N., Kawamura, K., Hattori, M., Saito, K., and Ogawa, Y., 2001. A new type of intra-plate volcanism; young alkali-basalts discovered from the subducting Pacific plate, northern Japan Trench. Geophysical Research Letters, 28, 2719–2722.CrossRefGoogle Scholar
  30. Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S. P., Kaneoka, I., Hirata, T., Kimura, J.-I., Ishii, T., Ogawa, Y., Machida, S., and Suyehiro, K., 2006. Volcanism in response to plate flexure. Science, 313, doi: 10.1126/science.1128235.Google Scholar
  31. Hirano, N., Koppers, A. A. P., Takahashi, A., Fujiwara, T., and Nakanishi, M., 2008. Seamounts, knolls and petit-spot monogenetic volcanoes on the subducting Pacific plate. Basin Research, 20, 543–553.CrossRefGoogle Scholar
  32. Hoernle, K., Hauff, F., and van den Bogaard, P., 2004. 70 m.y. history (139–69 Ma) for the Caribbean large igneous province. Geology, 32, 697–700.Google Scholar
  33. Hoernle, J., Hauff, F., van den Bogaard, P., Werner, R., Mortimer, J., Garbe-Schönberg, D., and Davy, B., 2010. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus. Geochimica et Cosmochimica Acta, 74, 7196–7219.CrossRefGoogle Scholar
  34. Ingle, S., and Coffin, M. F., 2004. Impact origin for the greater Ontong Java Plateau? Earth and Planetary Science Letters, 218, 123–134.CrossRefGoogle Scholar
  35. Ishikawa, A., Nakamura, E., and Mahoney, J. J., 2005. Jurassic oceanic lithosphere beneath the southern Ontong Java Plateau: evidence from xenoliths in alnöite, Malaita, Solomon Islands. Geology, 33(5), 393–396.CrossRefGoogle Scholar
  36. Ito, G., and Clift, P. D., 1998. Subsidence and growth of Pacific Cretaceous plateaus. Earth and Planetary Science Letters, 161, 85–100.CrossRefGoogle Scholar
  37. Jones, A. P., Price, G. D., Price, N. J., DeCarli, P. S., and Clegg, R. A., 2002. Impact induced melting and the development of large igneous provinces. Earth and Planetary Science Letters, 202, 551–561.CrossRefGoogle Scholar
  38. Jones, A. P., Wünemann, K., and Price, G. D., 2005. Modeling impact volcanism as a possible origin for the Ontong Java Plateau. In Foulger, G. R., Natland, J. H., Presnall, D. C., and Anderson, D. L. (eds.), Plates, Plumes, and Paradigms. Geological Society of America. Special paper, Geological Society of America, Denver, Colorado, USA, Vol. 388, pp. 711–720.Google Scholar
  39. Kerr, A. C., and Mahoney, J. J., 2007. Oceanic plateaus: problematic plumes, potential paradigms. Chemical Geology, 241, 332–353.CrossRefGoogle Scholar
  40. Kerr, A. C., Tarney, J., Marriner, G. F., Nivia, A., and Saunders, A. D., 1997. The Caribbean-Colombian cretaceous igneous province: the internal anatomy of an oceanic plateau. In Mahoney, J. J., and Coffin, M. F. (eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union Geophysical Monograph, American Geophysical Union, Washington, DC, USA, Vol. 100, pp. 123–144.Google Scholar
  41. Koppers, A. A. P., Yamazaki, T., Geldmacher, J., and The IODP Expedition 330 Scientific Party, 2013. IODP expedition 330: drilling the Louisville seamount trail in the SW Pacific. Scientific Drilling, 15, doi: 10.2204/iodp.sd.15.02.2013.Google Scholar
  42. Korenaga, J., 2005. Why did not the Ontong Java Plateau form subaerially? Earth and Planetary Science Letters, 234, 385–399.CrossRefGoogle Scholar
  43. Larson, R. L., 1997. Superplumes and ridge interactions between Ontong Java and Manihiki Plateaus and the Nova-Canton Trough. Geology, 25, 779–782.CrossRefGoogle Scholar
  44. Lin, S.-C., and van Keken, P. E., 2006a. Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer. Geochemistry, Geophysics, Geosystems, 7(2), doi: 10.1029/2005GC001071.Google Scholar
  45. Lin, S.-C., and van Keken, P. E., 2006b. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochemistry, Geophysics, Geosystems, 7(2), doi: 10.1029/2005GC001072.Google Scholar
  46. Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J., and Pringle, M. S., 1993. Geochemistry and age of the Ontong Java Plateau. In Pringle, M. S., Sager, W. W., Sliter, W. V., and Stein, S. (eds.), The Mesozoic Pacific: Geology, Tectonics, and Volcanism. American Geophysical Union Geophysical Monograph, American Geophysical Union, Washington, DC, USA, Vol. 77, pp. 233–262.Google Scholar
  47. McDougall, I., 1964. Potassium-Argon Ages from Lavas of the Hawaiian Islands. Geological Society of America Bulletin, 75, 107–128.CrossRefGoogle Scholar
  48. McNutt, M., Fischer, K., Kruse, S., and Natland, J., 1989. The origin of the Marquesas fracture zone ridge and its implications for the nature of hot spots. Earth and Planetary Science Letters, 91, 381–393.CrossRefGoogle Scholar
  49. Montelli, R., Nolet, G., Dahlen, F. A., Master, G., Engdahl, E. R., and Hung, S.-H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.CrossRefGoogle Scholar
  50. Montelli, R., Nolet, G., Dahlen, F. A., and Masters, G., 2006. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11), doi: 10.1029/2006GC0012.Google Scholar
  51. Morgan, W. J., 1971. Convection plumes in the lower mantle. Nature, 230, 42–43.CrossRefGoogle Scholar
  52. Morgan, W. J., 1972. Deep mantle convection plumes and plate motions. American Association of Petroleum Geologists Bulletin, 56(2), 203–213.Google Scholar
  53. Morgan, W. J., 1978. Rodriguez, Darwin, Amsterdam, a second type of hotspot island. Journal of Geophysical Research, 83(B11), 5355–5360.CrossRefGoogle Scholar
  54. Muller, R. A., 2002. Avalanches at the core-mantle boundary. Geophysical Research Letters, 29, doi: 10.1029/2002GL015938.Google Scholar
  55. Natland, J. H., and Winterer, E. L., 2005. Fissure control on volcanic action in the Pacific. In Foulger, G. R., Natland, J. H., Presnall, D. C., and Anderson, D. L. (eds.), Plates, Plumes, and Paradigms. Geological Society of America. Special paper, Geological Society of America, Denver, Colorado, USA, Vol. 388, pp. 687–710.Google Scholar
  56. Neal, C. R., Mahoney, J. J., Kroenke, L. W., Duncan, R. A., and Petterson, M. G., 1997. The Ontong Java Plateau. In Mahoney, J. J., and Coffin, M. F. (eds.), Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union Geophysical Monograph, American Geophysical Union, Washington, DC, USA, Vol. 100, pp. 183–216.Google Scholar
  57. Regelous, M., Hofmann, A. W., Abouchami, W., and Galer, S. J. G., 2003. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. Journal of Petrology, 44, 113–140.CrossRefGoogle Scholar
  58. Richards, M. A., Duncan, R. A., and Courtillot, V. E., 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science, 246, 103–107.CrossRefGoogle Scholar
  59. Riisager, P., Hall, S., Antretter, M., and Zhao, X., 2003. Paleomagnetic paleolatitude of Early Cretaceous Ontong Java Plateau basalts: implications for Pacific apparent and true polar wander. Earth and Planetary Science Letters, 208, 235–252.CrossRefGoogle Scholar
  60. Rogers, G. C., 1982. Oceanic plateaus as meteorite impact signatures. Nature, 299, 341–342.CrossRefGoogle Scholar
  61. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shepard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., and Chandler, M., 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113, 212–270.CrossRefGoogle Scholar
  62. Siebert, L., Simkin, T., and Kimberley, P., 2010. Volcanoes of the world, 3rd edn. Berkeley: University of California Press. 568 pp.Google Scholar
  63. Sinton, C. W., Duncan, R. A., Storey, M., Lewis, J., and Estrada, J. J., 1998. An oceanic flood basalt province within the Caribbean plate. Earth and Planetary Science Letters, 155, 221–235.CrossRefGoogle Scholar
  64. Sleep, N. H., 1990. Hotspots and mantle plumes: some phenomenology. Journal of Geophysical Research, 95(B5), 6715–6736.CrossRefGoogle Scholar
  65. Sleep, N. H., 2002. Ridge-crossing mantle plumes and gaps in tracks. Geochemistry, Geophysics, Geosystems, 3(12), doi: 10.1029/2001GC000290.Google Scholar
  66. Stolper, E. M., DePaolo, D. J., and Thomas, D. M., 2009. Deep drilling into a mantle plume volcano: The Hawaii scientific drilling project. Scientific Drilling, 7, doi: 10.2204/iodp.sd.7.02.2009.Google Scholar
  67. Taylor, B., 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241, 372–380.CrossRefGoogle Scholar
  68. Tejada, M. L. G., Mahoney, J. J., Castillo, P. R., Ingle, S. P., Sheth, H. C., and Weis, D., 2004. Pin-pricking the elephant: evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts. In Fitton, J. G., Mahoney, J. J., Wallace, P. J., and Saunders, A. D. (eds.), Origin and Evolution of the Ontong Java Plateau. London: Geological Society. Special publication, 229, pp. 133–150.Google Scholar
  69. Timm, C., Hoernle, K., Werner, R., Hauff, F., van den Bogaard, P., Michael, P., Coffin, M. F., and Koppers, A., 2011. Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: new evidence for a plume origin. Earth and Planetary Science Letters, 304, 135–146.CrossRefGoogle Scholar
  70. Turcotte, D. L., and Oxburgh, E. R., 1973. Mid-plate tectonics. Nature, 244, 337–339.CrossRefGoogle Scholar
  71. Wessel, P., Sandwell, D. T., and Kim, S.-S., 2010. The global seamount census. Oceanography, 23(1), 24–33.CrossRefGoogle Scholar
  72. Wilson, J. T., 1963. A possible origin of the Hawaiian Islands. Canadian Journal of Physics, 41, 863–870.CrossRefGoogle Scholar
  73. Wilson, J. T., 1965. Evidence from oceanic islands suggesting movement in the Earth. Philosophical Transactions of the Royal Society of London, Mathematical, Physical and Engineering Sciences, A258, 145–167.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia