Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Coastal Biogeochemical Cycles

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_137-3

Definition

The “Coastal Biogeochemical Cycles” is dealing with the transformation of chemical speciation of elements (i.e., chemical form and valence) and flow (e.g., flux) of materials between biotic and abiotic compartments of coastal and marine environments (here after the coastal ocean) that is defined by landmass (e.g., continents) on one side and the open ocean on another side. The study of biogeochemical cycles in this domain needs an approach that provides an integrated view of the physical, biological, geological, and chemical aspects of materials in the changing marine environment.

Introduction

Our understanding of the ocean was built up along with the ambition of navigation and exploration of marine resources by human beings that started more than 2000 years ago. The coastal ocean, because of its proximity to the land, is the marine environment that has been extensively explored by our human societies. For instance, about 1,500 years ago, our ancestors from Asia started to...

Keywords

Open Ocean Biogeochemical Cycle Coastal Environment Ocean Acidification Coastal Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The author expresses gratitude to Profs. Jan Harff and Bodo von Bodungen for their review comments to improve the original manuscript of this work.

Bibliography

  1. Arrigo, K. R., van Dijken, G., and Pabi, S., 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters, 35, L19603, doi:10.1029/2008GL035028.CrossRefGoogle Scholar
  2. Azam, F., and Malfatti, F., 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5, 782–791.CrossRefGoogle Scholar
  3. Bange, H. W., Naqvi, S. W. A., and Codispoti, L. A., 2005. The nitrogen cycle in the Arabian Sea. Progress in Oceanography, 65, 145–158.CrossRefGoogle Scholar
  4. Bauer, J. E., and Bianchi, T. S., 2011. Dissolved organic carbon cycling and transformation. In Wolanski, E., and McLusky, D. S. (eds.), Treatise on Estuarine and Coastal Science. Waltham: Academic Press, Vol. 5, pp. 7–67.CrossRefGoogle Scholar
  5. Bauer, J. E., and Druffel, E. R. M., 1998. Ocean margins as a significant source of organic matter to the deep open ocean. Nature, 392, 482–485.CrossRefGoogle Scholar
  6. Boesch, D. F., 2002. Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries, 25, 886–900.CrossRefGoogle Scholar
  7. Bruland, K. W., Rue, E. L., Smith, G. J., and Ditullio, G. R., 2005. Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Marine Chemistry, 93, 81–103.CrossRefGoogle Scholar
  8. Chen, C. T. A., Liu, K. K., and Macdonald, R., 2003. Continental margin exchanges. In Fasham, M. J. R. (ed.), Ocean Biogeochemistry. Berlin: Springer, pp. 53–97.CrossRefGoogle Scholar
  9. Dugdale, R. C., and Goering, J. J., 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196–206.CrossRefGoogle Scholar
  10. Fasham, M. J. R., Balino, B. M., and Bowles, M. C., 2001. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). AMBIO Special Report, 10, 4–31.Google Scholar
  11. GEOHAB, 2001. Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. Baltimore and Paris: SCOR and IOC, 87 pp.Google Scholar
  12. GEOTRACES, 2006. GEOTRACES Science Plan. Baltimore, MD: Scientific Committee on Oceanic Research (SCOR). 79 pp.Google Scholar
  13. GLOBEC, 1997. Global Ocean Ecosystem Dynamics Science Plan. IGBP Report No. 40. Stockholm: IGBP Secretariat, 83 pp.Google Scholar
  14. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E., 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.CrossRefGoogle Scholar
  15. Hopkinson, C. S., and Vallino, J. J., 2005. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature, 433, 142–145.CrossRefGoogle Scholar
  16. IMBER, 2005. IMBER Science Plan and Implementation Strategy. IGBP Report No. 52. Stockholm: IGBP Secretariat, 76 pp.Google Scholar
  17. IMBER, 2010. Supplement to the IMBER Science Plan and Implementation Strategy. IGBP report no. 52A. Stockholm: IGBP Secretariat, 36 pp.Google Scholar
  18. LOICZ, 2005. LOICZ Science Plan and Implementation Strategy. IGBP report 51/IHDP report no. 18. Stockholm: IGBP Secretariat, 60 pp.Google Scholar
  19. Morel, F. M. M., Milligan, A. J., and Saito, M. A., 2003. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. In Elderfield, H. (ed.), The Oceans and Marine Geochemistry, Treatise on Geochemistry. Oxford: Elsevier, pp. 113–143.CrossRefGoogle Scholar
  20. Naqvi, S. W. A., Bange, H. W., Farias, L., Monterio, P. M. S., Scranton, M. I., and Zhang, J., 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences, 7, 2159–2190.CrossRefGoogle Scholar
  21. Redfield, A. C., Ketchum, B. H., and Richards, F. A., 1963. The influence of organisms on the composition of sea-water. In Hill, M. N. (ed.), The Sea. New York: Interscience, pp. 26–77.Google Scholar
  22. Samiento, J. L., and Gruber, N., 2006. Ocean Biogeochemical Dynamics. Princeton: Princeton University Press.Google Scholar
  23. Syvitski, J. P. M., Vorosmarty, C., Kettner, A. J., and Green, P., 2005. Impacts of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376–380.CrossRefGoogle Scholar
  24. Thomas, H., Bozec, Y., Elkalay, K., and de Baar, H. J. W., 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304, 1005–1008.CrossRefGoogle Scholar
  25. Zhang, J., Liu, S. M., Ren, J. L., Wu, Y., and Zhang, G. L., 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea. Progress in Oceanography, 74, 449–478.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Estuarine and Coastal Research, East China Normal UniversityShanghaiChina