Encyclopedia of Marine Geosciences

Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Plate Motion

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_131-1

Synonyms

Definition

Plate motion can be relative or absolute. Relative plate motion describes the motion of one tectonic plate relative to another. Absolute plate motion describes the motion of one plate relative to a fixed reference system. Plate motion can be described by a pole of rotation and an angular velocity about this pole.

Introduction

A tectonic plate is defined as a portion of the outer shell of the Earth that moves coherently as a rigid body without any significant internal deformation over geological timescales. The Earth’s surface is composed of a mosaic of rigid plates that move relative to one another over hotter, more mobile mantle material. Plates interact at plate boundaries, which are dynamically evolving and continuous features.

History

Alfred Wegner’s idea of “continental drift” (Wegener, 1915) to explain the geometrical, geological, environmental, and paleontological similarities between now distant continents lacked a physically plausible...

This is a preview of subscription content, log in to check access

Bibliography

  1. Argus, D. F., and Heflin, M. B., 1995. Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System. Geophysical Research Letters, 22(15), 1973–1976.CrossRefGoogle Scholar
  2. Argus, D. F., Gordon, R. G., Heflin, M. B., Ma, C., Eanes, R. J., Willis, P., Peltier, W. R., and Owen, S. E., 2010. The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophysical Journal International, 180(3), 913–960.CrossRefGoogle Scholar
  3. Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S., 2011. Next-generation plate-tectonic reconstructions using GPlates. In Randy Keller, G., Randy Keller, G., and Baru, C. (eds.), Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences. Cambridge: Cambridge University Press, pp. 95–114.CrossRefGoogle Scholar
  4. Chang, T., 1988. Estimating the relative rotation of two tectonic plates from boundary crossings. Journal of the American Statistical Association, 83(404), 1178–1183.CrossRefGoogle Scholar
  5. Cox, A., and Hart, R. B., 1986. Plate Tectonics: How it Works. Oxford: Blackwell. 392 p.Google Scholar
  6. DeMets, C., Gordon, R. G., and Argus, D. F., 2010. Geologically current plate motions. Geophysical Journal International, 181, 1–80.CrossRefGoogle Scholar
  7. Dietz, R. S., 1961. Evolution by spreading of the sea floor. Nature, 190, 854–857.CrossRefGoogle Scholar
  8. Doubrovine, P. V., Steinberger, B., and Torsvik, T. H., 2012. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. Journal of Geophysical Research, 117(B9), B09101.CrossRefGoogle Scholar
  9. Golonka, J., 2007. Late triassic and early jurassic palaeogeography of the world. Palaeogeography Palaeoclimatology Palaeoecology, 244(1–4), 297–307.CrossRefGoogle Scholar
  10. Gordon, R. C., 2000. Diffuse oceanic plate boundaries: strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors. In Richards, M. A., Gordon, R. C., and van der Hilst, R. D. (eds.), The History and Dynamics of Global Plate Motions. Washington, DC: American Geophysical Union, Vol. 121, pp. 145–159.CrossRefGoogle Scholar
  11. Hellinger, S. J., 1981. The uncertainties of finite rotations in plate tectonics. Journal of Geophysical Research, 86(B10), 9312–9318.CrossRefGoogle Scholar
  12. Hess, H. H., 1962. History of Ocean Basins: Geological Society of America Bulletin. In Petrologic Studies: A Volume to Honour A.F. Buddington. Boulder, CO: Geological Society of America, pp. 559–620.Google Scholar
  13. Kogan, M. G., and Steblov, G. M., 2008. Current global plate kinematics from GPS (1995–2007) with the plate-consistent reference frame. Journal of Geophysical Research, 113(B4), B04416.CrossRefGoogle Scholar
  14. Matthews, K. J., Müller, R. D., Wessel, P., and Whittaker, J. M., 2011. The tectonic fabric of the ocean basins. Journal of Geophysical Research, 116, B12109, 1–28.Google Scholar
  15. Morgan, W. J., 1968. Rises, trenches, great faults and crustal blocks. Journal of Geophysical Research, 73, 1959–1982.CrossRefGoogle Scholar
  16. Morgan, W. J., 1971. Convection plumes in the lower mantle. Nature, 230, 43–44.CrossRefGoogle Scholar
  17. Morgan, W. J. 1972. Plate Motions and Deep Mantle Convection. Geological Society of America Memoirs. Boulder, CO: Geological Society of America, Vol. 132, pp. 7–22.Google Scholar
  18. Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9(Q04006), 18–36, doi:10.1029/2007GC001743Google Scholar
  19. O’Neill, C., Muller, D., and Steinberger, B., 2003. Geodynamic implications of moving Indian Ocean hotspots. Earth and Planetary Science Letters, 215(1–2), 151–168.CrossRefGoogle Scholar
  20. O’Neill, C., Müller, D., and Steinberger, B., 2005. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochemistry, Geophysics, Geosystems. 6(4), Q04003.Google Scholar
  21. Scotese, C. R., 2004. A continental drift flipbook. Journal of Geology, 112(6), 729–741.CrossRefGoogle Scholar
  22. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G. E., Talsma, A. S., Gurnis, M., Turner, M., Maus, S., and Chandler, M. T., 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth Science Reviews, 113, 212–270.CrossRefGoogle Scholar
  23. Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., and Ghattas, O., 2010. The dynamics of plate tectonics and mantle flow: from local to global scales. Science, 329, 1033–1038.CrossRefGoogle Scholar
  24. Stampfli, G. M., and Borel, G. D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1–2), 17–33.CrossRefGoogle Scholar
  25. Steinberger, B., and O’Connell, R. J., 1998. Advection of plumes in mantle flow: Implications for hot spot motion, mantle viscosity and plume distributions. Geophysical Journal International, 132, 412–434.CrossRefGoogle Scholar
  26. Steinberger, B., and Torsvik, T. H., 2008. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature, 452(7187), 620–623.CrossRefGoogle Scholar
  27. Steinberger, B., and Torsvik, T., 2010. Toward an explanation for the present and past locations of the poles. Geochemistry, Geophysics, Geosystems, 11(6).Google Scholar
  28. Stock, J., and Molnar, P., 1988. Uncertainties and implications of the late cretaceous and tertiary position of North America relative to the Farallon, Kula, and Pacific plate. Tectonics, 7(6), 1339–1384.CrossRefGoogle Scholar
  29. Torsvik, T. H., Van der Voo, R., and Redfield, T. F., 2002. Relative hotspot motions versus true polar wander. Earth and Planetary Science Letters, 202(2), 185–200.CrossRefGoogle Scholar
  30. Torsvik, T., Müller, R. D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008. Global plate motion frames: toward a unified model. Reviews of Geophysics, 46(RG3004), doi:10.1029/2007RG000227Google Scholar
  31. Van der Voo, R., 1990. The reliability of paleomagnetic data. Tectonophysics, 184(1), 1–9.CrossRefGoogle Scholar
  32. Wegener, A., 1915. The Origin of Continents and Oceans. New York, NY: Courier Dover Publications.Google Scholar
  33. Wessel, P., and Kroenke, L. W., 1997. A geometric technique for relocating hotspots and refining absolute plate motions. Nature, 387(6631), 365–369.CrossRefGoogle Scholar
  34. Williams, S. E., Müller, R. D., Landgrebe, T. C. W., and Whittaker, J. M., 2012. An open-source software environment for visualizing and refining plate tectonic reconstructions using high-resolution geological and geophysical data sets. GSA Today, 22(4/5), 4–9.Google Scholar
  35. Wilson, J. T., 1965. A new class of faults and their bearing on continental drift. Nature, 207, 343–347.CrossRefGoogle Scholar
  36. Wright, N., Zahirovic, S., Müller, R. D., and Seton, M., 2013. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences, 10(3), 1529–1541.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.EarthByte Group, School of GeosciencesThe University of SydneySydneyAustralia