Encyclopedia of Marine Geosciences

Living Edition
| Editors: Jan Harff, Martin Meschede, Sven Petersen, Jörn Thiede

Earthquake

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6644-0_106-1

Synonyms

Definition

The term earthquake describes ground shaking and radiation of seismic energy, which is caused, e.g., by slip on a fault, magmatic activity, or cavity collapse.

Introduction

Earthquakes are events of seismic ground shaking caused, e.g., by the release of elastic stress accumulated along a previously locked fault zone (Fig. 1), by magmatic activity, or by the collapse of caves. Further, human activity such as mining and hydrocarbon exploitation, underground nuclear explosions, geothermal fluid injection, or rapid water level changes in dam lakes may cause earthquakes. Mostly, stress release occurs suddenly and unpredicted. In the case of large earthquakes, ground shaking may be considerable and cause devastation and fatalities.

Keywords

Ground Motion Seismic Wave Seismic Hazard Subduction Zone Fault Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Aki, K., and Richards, P. G., 2002. Quantitative Seismology, 2nd edn. New York: Freeman.Google Scholar
  2. Beroza, G. C., and Ide, S., 2011. Slow earthquakes and non-volcanic tremor. Annual Review of Earth and Planetary Sciences, 39, 271–296, doi:10.1146/annurev-earth-040809-152531.CrossRefGoogle Scholar
  3. Choy, G. L., and Boatwright, J. L., 1995. Global patterns of radiated seismic energy and apparent stress. Journal of Geophysical Research, 100(B9), 18,205–18,228.CrossRefGoogle Scholar
  4. Cisternas, M., et al., 2005. Predecessors of the giant 1960 Chile earthquake. Nature, 437, 404–407, doi:10.1038/nature03943.CrossRefGoogle Scholar
  5. Clauser, C., 2014. Einführung in die Geophysik. Berlin: Springer, p. 407 pp.CrossRefGoogle Scholar
  6. Dragert, H., Wang, K., and James, T. S., 2001. A silent slip event on the deeper Cascadia subduction interface. Science, 292, 1525–1528.CrossRefGoogle Scholar
  7. Eberhart-Phillips, D., Reyners, M., Chadwick, M., and Stuart, G., 2008. Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North Island, New Zealand. Geophysical Journal International, 174, 418–434, doi:10.1111/j.1365-246X.2008.03816.CrossRefGoogle Scholar
  8. Fowler, M., 2005. The Solid Earth, 2nd edn. Cambridge: Cambridge University Press, p. 685 pp.Google Scholar
  9. Giardini, D., Grüntha, G., Shedlock, K.M., and Zhang, P., 1999. The GSHAP global seismic hazard map. Annali di Geofisica 42, 1225–1230.Google Scholar
  10. Goldfinger, C., 2011. Submarine paleoseismology based on turbidite records. Annual Review of Marine Science, 3, 35–66, doi:10.1146/annurev-marine-120709-142852.CrossRefGoogle Scholar
  11. Green, R. A., Obermeier, S. F., and Olson, S. M., 2005. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: field examples. Engineering Geology, 76, 263–293, doi:10.1016/j.enggeo.2004.07.026.CrossRefGoogle Scholar
  12. Gutenberg, B., and Richter, C. F., 1954. Seismicity of the Earth and Associated Phenomena, 2nd edn. Princeton: Princeton University Press, p. 310 pp.Google Scholar
  13. Gutenberg, B., and Richter, C. F., 1956. Magnitude and energy of earthquakes. Annali di Geofisica, 9, 1–15.Google Scholar
  14. Hainzl, S., Fischer, T., and Dahm, T., 2012. Seismicity-based estimation of the driving fluid pressure in the case of swarm activity in Western Bohemia. Geophysical Journal International, 191, 271–281, doi:10.1111/j.1365-246X.2012.05610.x.CrossRefGoogle Scholar
  15. Hanks, T. C., and Kanamori, H., 1979. A moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350.CrossRefGoogle Scholar
  16. Heuret, A., and Lallemand, S., 2005. Plate motions, slab dynamics and back-arc deformation. Physics of the Earth and Planetary Interiors, 149, 31–51.CrossRefGoogle Scholar
  17. Hickman, S., Sibson, R., and Bruhn, R., 1995. Introduction to special section: mechanical involvement of fluids in faulting. Journal of Geophysical Research, 100, 12 831–12 840.CrossRefGoogle Scholar
  18. Holtkamp, S. G., and Brudzinski, M. R., 2011. Earthquakes swarms in circum-Pacific subduction zones. EPSL, 305, 205–215, doi:10.1016/j.epsl.2011.03.004.CrossRefGoogle Scholar
  19. Kanamori, H., and Brodsky, E. E., 2004. The physics of earthquakes. Reports on Progress in Physics, 67, 1429–1496, doi:10.1088/0034-4885/67/8/R03.CrossRefGoogle Scholar
  20. McKenzie, D., Jackson, J., and Priestley, K., 2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233, 337–349, doi:10.1016/j.epsl.2005.02.005.CrossRefGoogle Scholar
  21. Okal, E. A., and Newman, A. V., 2001. Tsunami earthquakes: the quest for a regional signal. Earth and Planetary Science Letters, 124, 45–70.CrossRefGoogle Scholar
  22. Okal, E. A., and Sweet, J. R., 2007. Frequency-size distributions for intraplate earthquakes. Geological Society of America Special Papers, 425, 59–71, doi:10.1130/2007.2425(05).Google Scholar
  23. Pacheco, J. F., and Sykes, L. R., 1992. Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bulletin of the Seismological Society of America, 82, 1306–1349.Google Scholar
  24. Quigley, M. C., Bastin, S., and Bradley, B. A., 2013. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology, 41, 419–422, doi:10.1130/G33944.1.CrossRefGoogle Scholar
  25. Scholz, C. H., 2002. The Mechanics of Earthquakes and Faulting. Cambridge: Cambridge University Press, p. 471 pp.CrossRefGoogle Scholar
  26. Schurr, B., Asch, G., Rietbrock, A., Trumbull, R., and Haberland, C., 2003. Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth and Planetary Science Letters, 215, 105–119, doi:10.1016/S0012-821X(03)00441-2.CrossRefGoogle Scholar
  27. Schwartz, S. Y., and Rokosky, J. M., 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones. Reviews of Geophysics, 45, RG3004. 32 pp.CrossRefGoogle Scholar
  28. Shedlock, K. M., Giardini, D., Grünthal, G., and Zhang, P., 2000. The GSHAP global seismic hazard map. Seismologica Research Letters, 71, 679–686.CrossRefGoogle Scholar
  29. Stein, S., and Wysession, M., 2003. An Introduction to Seismology, Earthquakes, and Earth Structure. Malden: Blackwell, p. 498 pp.Google Scholar
  30. Triep, E. O., and Sykes, L. R., 1997. Frequency of occurrence of moderate to great earthquakes in intracontinental regions: Implications for changes in stress, earthquake prediction, and hazards assessments. Journal of Geophysical Research, 102, 9923–9948.CrossRefGoogle Scholar
  31. Turcotte, D. L., and Schubert, G., 2014. Geodynamics, 3rd edn. Cambridge: Cambridge University Press, p. 623 pp.Google Scholar
  32. Wallace, L. M., Beavan, J., Bannister, S., and Williams, C., 2012. Simultaneous long-term and short-term slow slip events at the Hikurangi subduction margin, New Zealand: implications for processes that control slow slip event occurrence, duration, and migration. Journal of Geophysical Research, 117, B11402, doi:10.1029/2012JB009489.CrossRefGoogle Scholar
  33. Wells, D. L., and Coppersmith, K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenFriedrich-Schiller-UniversitätJenaGermany