Advertisement

General Mechanisms of Plant Defense and Plant Toxins

  • Axel Mithöfer
  • Massimo E. Maffei
Reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Long before the appearance of flowering plants, early plants were infected by pathogenic microorganisms and challenged by herbivorous animals. Consequently, plants and animals evolved defenses and counterdefenses from the very beginning. Therefore, to cope with a huge diversity of unfavorable biotic conditions, plants developed several different defense strategies. In particular, defense strategies against feeding arthropods are highly diverse, including constitutive and inducible, direct and indirect defense mechanism. Among all types of defense, chemical defenses based on the synthesis and accumulation of a consistent number of natural bioactive compounds is a very successful and ubiquitously distributed strategy among the plant kingdom. Many of those compounds are toxic; others act as repellents or are attractive cues for organisms belonging to other trophic levels. Often, toxic compounds have specific targets; other compounds exhibit general toxicity. In such cases plants need to protect themselves. Within the plants’ reservoir of chemical defensive compounds, alkaloids, terpenoids, phenolic compounds, and many polypeptides can be found. Not only herbivorous insects but also mammalian organisms including human beings can be targeted by such plant-derived toxins, which will be demonstrated in selected examples.

Keywords

Herbivory Indirect/direct defense Inducible/constitutive defense Plant defense strategies Toxic compounds 

References

  1. Agrawal AA. Current trends in the evolutionary ecology of plant defence. Funct Ecol. 2011;25:420–32.CrossRefGoogle Scholar
  2. Amorim MHR, da Costa RMG, Lopes C, Bastos M. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol. 2013;43:559–79.PubMedCrossRefGoogle Scholar
  3. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol. 2004;19:535–44.PubMedCrossRefGoogle Scholar
  4. Andréasson E, Jørgensen LB. Localization of plant myrosinases and glucosinolates. In: Romeo JT, editor. Integrative phytochemistry: from ethnobotany to molecular ecology. Amsterdam: Elsevier; 2003. p. 79–99.CrossRefGoogle Scholar
  5. Andréasson E, Jørgensen LB, Höglund AS, Rask L, Meijer J. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol. 2001;1278:1750–63.CrossRefGoogle Scholar
  6. Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot. 2015;66:479–93.PubMedCrossRefGoogle Scholar
  7. Bezemer TM, van Dam NM. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol. 2005;20:617–24.PubMedCrossRefGoogle Scholar
  8. Bourras S, Rouxel T, Meyer M. Agrobacterium tumefaciens gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms. Phytopathology. 2015;105:1288–301.PubMedCrossRefGoogle Scholar
  9. Bricchi I, Bertea CM, Occhipinti A, Paponov IA, Maffei ME. Dynamics of membrane potential variation and gene expression induced by Spodoptera littoralis, Myzus persicae, and Pseudomonas syringae in Arabidopsis. PLoS One. 2012;7, e46673.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Buskuhl H, de Oliveira FL, Blind LZ, de Freitas RA, Barison A, Campos FR, Corilo YE, Eberlin MN, Caramori GF, Biavatti MW. Sesquiterpene lactones from Vernonia scorpioides and their in vitro cytotoxicity. Phytochemistry. 2010;71:1539–44.PubMedCrossRefGoogle Scholar
  11. Cameron DD, Neal AL, van Wees SCM, Ton J. Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci. 2013;18:539–45.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cederroth CR, Zimmermann C, Beny J-L, Schaad O, Combepine C, Descombes P, Doerge DR, Pralong FP, Vassalli J-D, Nefa S. Potential detrimental effects of a phytoestrogen-rich diet on male fertility in mice. Mol Cell Endocrinol. 2010;321:52–160.CrossRefGoogle Scholar
  13. Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids Lactones: benefits to plants and people. Int J Mol Sci. 2013;14:12780–805.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chan TYK. Aconite poisoning. Clin Toxicol. 2009;47:279–85.CrossRefGoogle Scholar
  15. Chan TYK. Aconitum alkaloid content and the high toxicity of aconite tincture. Forensic Sci Int. 2012;222:1–3.PubMedCrossRefGoogle Scholar
  16. Chen J, Li S, Shen Q. Folic acid and cell-penetrating peptide conjugated PLGA-PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur J Pharm Sci. 2012;47:430–43.PubMedCrossRefGoogle Scholar
  17. Chi SM, Xie W, Zhang JW, Xu SC. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. J Biomol Struct Dyn. 2015;33:2234–54.PubMedCrossRefGoogle Scholar
  18. Chubukov V, Mingardon F, Schackwitz W, Baidoo EEK, Alonso-Gutierrez J, Hu QJ, Lee TS, Keasling JD, Mukhopadhyay A. Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Appl Environ Microbiol. 2015;81:4690–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cong Y, Zhu HL, Zhang QC, Li L, Li HY, Wang XY, Guo JG. Steroidal alkaloids from Veratrum maackii REGEL with genotoxicity on brain-cell DNA in mice. Helv Chim Acta. 2015;98:539–45.CrossRefGoogle Scholar
  20. Crous PW, Hawksworth DL, Wingfield MJ. Identifying and naming plant-pathogenic fungi: past, present, and future. In: Van Alfen NK, editor. Annual review of phytopathology, vol. 53. Palo Alto: Annual Reviews; 2015. p. 247–67.Google Scholar
  21. Cui H, Xiang T, Zhou J-M. Plant immunity: a lesson from pathogenic bacterial effector proteins. Cell Microbiol. 2009;11:1453–61.PubMedCrossRefGoogle Scholar
  22. Cushnie TPT, Cushnie B, Lamb AJ. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents. 2014;44:377–86.PubMedCrossRefGoogle Scholar
  23. Dang LY, Van Damme EJM. Toxic proteins in plants. Phytochemistry. 2015;117:51–64.PubMedCrossRefGoogle Scholar
  24. de Lira CS, Pontual EV, de Albuquerque LP, Paiva LM, Paiva PMG, de Oliveira JV, Napoleao TH, Navarro D. Evaluation of the toxicity of essential oil from Alpinia purpurata inflorescences to Sitophilus zeamais (maize weevil). Crop Prot. 2015;71:95–100.CrossRefGoogle Scholar
  25. Dinan L. Phytoecdysteroids: biological aspects. Phytochemistry. 2001;57:325–39.PubMedCrossRefGoogle Scholar
  26. Duke SO, Canel C, Rimando AM, Tellez MR, Duke MV, Paul RN. Current and potential exploitation of plant glandular trichome productivity. In: Hallahan DL, Gray JC, editors. Advances in botanical research incorporating advances in plant pathology, vol. 31. New York: Academic; 2000. p. 121–51.Google Scholar
  27. Efferth T. Antiplasmodial and antitumor activity of arternisinin – from bench to bedside. Planta Med. 2007;73:299–309.PubMedCrossRefGoogle Scholar
  28. Efferth T, Kaina B. Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol. 2010;40:405–21.PubMedCrossRefGoogle Scholar
  29. Fang NB, Casida JE. Anticancer action of cube insecticide: correlation for rotenoid constituents between inhibition of NADH: ubiquinone oxidoreductase and induced ornithine decarboxylase activities. Proc Natl Acad Sci U S A. 1998;95:3380–4.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fatima U, Senthil-Kumar M. Plant and pathogen nutrient acquisition strategies. Front Plant Sci. 2015;6:12.CrossRefGoogle Scholar
  31. Froberg B, Ibrahim D, Furbee RB. Plant poisoning. Emerg Med Clin North Am. 2007;25:375–433.PubMedCrossRefGoogle Scholar
  32. Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 2004;37:287–303.PubMedCrossRefGoogle Scholar
  33. Gatehouse JA. Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 2002;156:145–69.CrossRefGoogle Scholar
  34. Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T. The population biology of fungal invasions. Mol Ecol. 2015;24:1969–86.PubMedCrossRefGoogle Scholar
  35. Green BT, Lee ST, Panter KE, Brown DR. Piperidine alkaloids: human and food animal teratogens. Food Chem Toxicol. 2012;50:2049–55.PubMedCrossRefGoogle Scholar
  36. Handley R, Ekbom B, Agren J. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol. 2005;30:284–92.CrossRefGoogle Scholar
  37. Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. Plant structural traits and their role in antiherbivore defense. Perspec Plant Ecol Evol Syst. 2007;8:157–78.CrossRefGoogle Scholar
  38. Harborne DJ. Emergency treatment of adder bites – case-reports and literature-review. Arch Emerg Med. 1993;10:239–43.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Heil M, Greiner S, Meimberg H, Kruger R, Noyer JL, Heubl G, Linsenmair KE, Boland W. Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature. 2004;430:205–8.PubMedCrossRefGoogle Scholar
  40. Heil M, McKey D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst. 2003;34:425–53.CrossRefGoogle Scholar
  41. Heil M, Silva Bueno JC. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci U S A. 2007;104:5467–72.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Helfer S. Rust fungi and global change. New Phytol. 2014;201:770–80.PubMedCrossRefGoogle Scholar
  43. Henry E, Yadeta KA, Coaker G. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New Phytol. 2013;199:908–15.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hilker M, Meiners T. Early herbivore alert: insect eggs induce plant defense. J Chem Ecol. 2006;32:1379–97.PubMedCrossRefGoogle Scholar
  45. Horbach R, Navarro-Quesada AR, Knogge W, Deising HB. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol. 2011;168:51–62.PubMedCrossRefGoogle Scholar
  46. Jalilzadeh-Amin G, Maham M. The application of 1,8-cineole, a terpenoid oxide present in medicinal plants, inhibits castor oil-induced diarrhea in rats. Pharm Biol. 2015;53:594–9.PubMedCrossRefGoogle Scholar
  47. Jeon JH, Park JH, Chung N, Lee HS. Active Monoterpene Ketones Isolated from Rosmarinus officinalis with fumigant and contact action against Tyrophagus putrescentiae (Schrank). J Food Prot. 2014;77:1355–60.PubMedCrossRefGoogle Scholar
  48. Kang C, Han JH, Oh J, Kulkarni R, Zhou W, Ferreira D, Jang TS, Myung CS, Na M. Steroidal alkaloids from Veratrum nigrum enhance glucose uptake in skeletal muscle cells. J Nat Prod. 2015;78:803–10.PubMedCrossRefGoogle Scholar
  49. Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 2001;291:2141–4.PubMedCrossRefGoogle Scholar
  50. Khojasteh SC, Oishi S, Nelson SD. Metabolism and toxicity of Menthofuran in rat liver slices and in rats. Chem Res Toxicol. 2010;23:1824–32.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Klauser E, Gulden M, Maser E, Seibert S, Seibert H. Additivity, antagonism, and synergy in arsenic trioxide-induced growth inhibition of C6 glioma cells: effects of genistein, quercetin and buthionine-sulfoximine. Food Chem Toxicol. 2014;67:212–21.PubMedCrossRefGoogle Scholar
  52. Krenzelok EP. Aspects of Datura poisoning and treatment. Clin Toxicol. 2010;48:104–10.CrossRefGoogle Scholar
  53. Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 2000;1248:599–608.CrossRefGoogle Scholar
  54. Kost C, Heil M. The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature. J Chem Ecol. 2008;34:2–13.CrossRefGoogle Scholar
  55. Lee JY. Plasmodesmata: a signaling hub at the cellular boundary. Curr Opin Plant Biol. 2015;27:133–40.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Li Y, Zhang YL, Fu MM, Yao Q, Zhuo HQ, Lu QY, Niu XQ, Zhang P, Pe YH, Zhang KJ. Parthenolide induces apoptosis and lytic cytotoxicity in Epstein-Barr virus-positive Burkitt lymphoma. Mol Med Rep. 2012;6:477–82.PubMedPubMedCentralGoogle Scholar
  57. Maejima K, Oshima K, Namba S. Exploring the phytoplasmas, plant pathogenic bacteria. J Gen Plant Pathol. 2014;80:210–21.CrossRefGoogle Scholar
  58. Maffei ME. Molecole Bioattive delle PIante. Rome: Gruppo Editoriale l’Espresso; 2015.Google Scholar
  59. Maffei ME, Gertsch J, Appendino G. Plant volatiles: production, function and pharmacology. Nat Prod Rep. 2011;28:1359–80.PubMedCrossRefGoogle Scholar
  60. Maffei ME, Mithöfer A, Boland W. Before gene expression: early events in plant-herbivore interactions. Trends Plant Sci. 2007;12:310–6.PubMedCrossRefGoogle Scholar
  61. Maggiolini M, Recchia AG, Bonofiglio D, Catalano S, Vivacqua A, Carpino A, Rago V, Rossi R, Ando S. The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor alpha in human breast cancer cells. J Mol Endocrinol. 2005;35:269–81.PubMedCrossRefGoogle Scholar
  62. Mayer VE, Frederickson ME, McKey D, Blatrix R. Current issues in the evolutionary ecology of ant–plant symbioses. New Phytol. 2014;202:749–64.PubMedCrossRefGoogle Scholar
  63. Miller JM, Conn EE. Metabolism of hydrogen cyanide by higher plants. Plant Physiol. 1980;5:1199–202.CrossRefGoogle Scholar
  64. Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.PubMedCrossRefGoogle Scholar
  65. Mithöfer A, Boland W, Maffei ME. Chemical ecology of plant-insect interactions. In: Parker J, editor. Plant disease resistance. Chichester: Wiley-Blackwell; 2009. p. 261–91.Google Scholar
  66. Morin D, Barthelemy S, Zini R, Labidalle S, Tillement JP. Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett. 2001;495:131–6.PubMedCrossRefGoogle Scholar
  67. Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel J. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology. 1999;256:75–84.PubMedCrossRefGoogle Scholar
  68. Navajas M, de Moraes GJ, Auger P, Migeon A. Review of the invasion of Tetranychus evansi: biology, colonization pathways, potential expansion and prospects for biological control. Exp Appl Acarol. 2013;59:43–65.PubMedCrossRefGoogle Scholar
  69. Nyirimigabo E, Xu YY, Li YB, Wang YM, Agyemang K, Zhang YJ. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J Pharm Pharmacol. 2015;67:1–19.PubMedCrossRefGoogle Scholar
  70. Occhipinti A. Plant coevolution: evidences and new challenges. J Plant Interact. 2013;8:188–96.CrossRefGoogle Scholar
  71. Occhipinti A, Maffei ME. Chlorophyll and its degradation products in the two-spotted spider mite, Tetranychus urticae (Koch): observations using epifluorescence and confocal laser scanning microscopy. Exp Appl Acarol. 2013;61:213–9.PubMedCrossRefGoogle Scholar
  72. Pasteels JM. Chemical defence, offence and alliance in ants-aphids-ladybirds relationships. Popul Ecol. 2007;49:5–14.CrossRefGoogle Scholar
  73. Peixoto MG, Bacci L, Blank AF, Araujo APA, Alves PB, Silva JHS, Santos AA, Oliveira AP, da Costa AS, Arrigoni-Blank MD. Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Ind Crop Prod. 2015;71:31–6.CrossRefGoogle Scholar
  74. Pennec JP, Aubin M. Effects of aconitine and veratrine on the isolated perfused heart of the common eel (Anguilla anguilla L.). Comp Biochem Physiol C Comp Pharmacol Toxicol. 1984;77:367–9.CrossRefGoogle Scholar
  75. Philippe G, Angenot L, Tits M, Frederich M. About the toxicity of some Strychnos species and their alkaloids. Toxicon. 2004;44:405–16.PubMedCrossRefGoogle Scholar
  76. Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol. 2011;62:549–66.PubMedCrossRefGoogle Scholar
  77. Pimkaew P, Suksen K, Somkid K, Chokchaisiri R, Jariyawat S, Chuncharunee A, Suksamrarn A, Piyachaturawat P. Zederone, a sesquiterpene from Curcuma elata Roxb, is hepatotoxic in mice. Int J Toxicol. 2013;32:454–62.PubMedCrossRefGoogle Scholar
  78. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature. 2005;434:732–7.PubMedCrossRefGoogle Scholar
  79. Rasul A, Khan M, Yu B, Ali M, Bo YJ, Yang H, Ma TH. Isoalantolactone, a sesquiterpene lactone, induces apoptosis in SGC-7901 cells via mitochondrial and phosphatidylinositol 3-kinase/Akt signaling pathways. Arch Pharm Res. 2013;36:1262–9.PubMedCrossRefGoogle Scholar
  80. Reynolds T. Hemlock alkaloids from Socrates to poison aloes. Phytochemistry. 2005;66:1399–406.PubMedCrossRefGoogle Scholar
  81. Roossinck MJ. Plants, viruses and the environment: ecology and mutualism. Virology. 2015;479:271–7.PubMedCrossRefGoogle Scholar
  82. Sattelle DB. Acetylcholine receptors of insects. Adv Insect Physiol. 1980;15:215–315.CrossRefGoogle Scholar
  83. Scapinello J, Oliveira JV, Ribeiros ML, Tomazelli O, Chiaradia LA, Dal MJ. Effects of supercritical CO2 extracts of Melia azedarach L. on the control of fall armyworm (Spodoptera frugiperda). J Supercrit Fluids. 2014;93:20–6.CrossRefGoogle Scholar
  84. Schep LJ, Schmierer DM, Fountain JS. Veratrum poisoning. Toxicol Rev. 2006;25:73–8.PubMedCrossRefGoogle Scholar
  85. Shafikova TN, Omelichkina YV. Molecular-genetic aspects of plant immunity to phytopathogenic bacteria and fungi. Russ J Plant Physiol. 2015;62:571–85.CrossRefGoogle Scholar
  86. Shinya T, Nakagawa T, Kaku H, Shibuya N. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol. 2015;26:64–71.PubMedCrossRefGoogle Scholar
  87. Shroff R, Vergara F, Muck A, Svatoš A, Gershenzon J. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci U S A. 2008;1058:6196–201.CrossRefGoogle Scholar
  88. Shu YZ. Recent natural products based drug development: a pharmaceutical industry perspective. J Nat Prod. 1998;61:1053–71.PubMedCrossRefGoogle Scholar
  89. Siddiqui BS, Khatoon N, Begum S, Farooq AD, Qamar K, Bhatti HA, Ali SK. Flavonoid and cardenolide glycosides and a pentacyclic triterpene from the leaves of Nerium oleander and evaluation of cytotoxicity. Phytochemistry. 2012;77:238–44.PubMedCrossRefGoogle Scholar
  90. Snoeren TAL, De Jong PW, Dicke M. Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. J Ecol. 2007;95:17–26.CrossRefGoogle Scholar
  91. Soler R, Erb M, Kaplan I. Long distance root-shoot signalling in plant-insect community interactions. Trends Plant Sci. 2013;18:149–56.PubMedCrossRefGoogle Scholar
  92. Takabayashi J and Dicke M. Plant-carnivore mutualism through herbivore induced carnivore attractants. Trends Plant Sci. 1996;1:109–113.CrossRefGoogle Scholar
  93. Thomassen D, Slattery JT, Nelson SD. Contribution of menthofuran to the hepatotoxicity of pulegone – assessment based on matched area under the curve and on matched time course. J Pharm Exp Ther. 1988;244:825–9.Google Scholar
  94. Tomatsu M, Ohnishi-Kameyama M, Shibamoto N. Aralin, a new cytotoxic protein from Aralia elata, inducing apoptosis in human cancer cells. Cancer Lett. 2003;199:19–25.PubMedCrossRefGoogle Scholar
  95. Trda L, Boutrot F, Claverie J, Brule D, Dorey S, Poinssot B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci. 2015;6:11.CrossRefGoogle Scholar
  96. Ueda S, Nakamura H, Masutani H, Sasada T, Takabayashi A, Yamaoka Y, Yodoi J. Baicalin induces apoptosis via mitochondrial pathway as prooxidant. Mol Immunol. 2002;38:781–91.PubMedCrossRefGoogle Scholar
  97. Visser BJ, Wieten RW, Kroon D, Nagel IM, Belard S, van Vugt M, Grobusch MP. Efficacy and safety of artemisinin combination therapy (ACT) for non-falciparum malaria: a systematic review. Malar J. 2014;13:463.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Vetter J. Plant cyanogenic glycosides. Toxicon. 2000;38:11–36.PubMedCrossRefGoogle Scholar
  99. Vetter J. Poison hemlock (Conium maculatum L.). Food Chem Toxicol. 2004;42:1373–82.PubMedCrossRefGoogle Scholar
  100. Wang S, Aarts JMM, de Haan LHJ, Argyriou D, Peijnenburg AACM, Rietjens IMCM, Bovee TFH. Towards an integrated in vitro strategy for estrogenicity testing. J Appl Toxicol. 2014;34:1031–40.PubMedCrossRefGoogle Scholar
  101. Wang L, Li W, Liu Y. Hypotensive effect and toxicology of total alkaloids and veratramine from roots and rhizomes of Veratrum nigrum L. in spontaneously hypertensive rats. Pharmazie. 2008;63:606–10.PubMedGoogle Scholar
  102. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012;7:1306–20.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Whitfield AE, Falk BW, Rotenberg D. Insect vector-mediated transmission of plant viruses. Virology. 2015;479:278–89.PubMedCrossRefGoogle Scholar
  104. Wirthmueller L, Maqbool A, Banfield MJ. On the front line: structural insights into plant-pathogen interactions. Nat Rev Microbiol. 2013;11:761–76.PubMedCrossRefGoogle Scholar
  105. Xie YJ, Wang K, Huang QY, Lei CL. Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Ind Crop Prod. 2014;53:163–6.CrossRefGoogle Scholar
  106. Yang LQ, Stöckigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep. 2010;27:1469–79.PubMedCrossRefGoogle Scholar
  107. Yip W-K, Yang S. Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol. 1988;88:473–6.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL. Cyanogenic glucosides and plant–insect interactions. Phytochemistry. 2004;65:293–306.PubMedCrossRefGoogle Scholar
  109. Zhang Y, Peng Y, Li LZ, Zhao L, Hu Y, Hu C, Song SJ. Studies on cytotoxic triterpene saponins from the leaves of Aralia elata. Food Chem. 2013;138:208–13.PubMedCrossRefGoogle Scholar
  110. Zhao Z, Zhang W, Stanley BA, Assmann SM. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell. 2008;20:3210–26.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zhu F, Poelman EH, Dicke M. Insect herbivore-associated organisms affect plant responses to herbivory. New Phytol. 2014;204:315–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Bioorganic ChemistryMax Planck Institute for Chemical EcologyJenaGermany
  2. 2.Plant Physiology Unit, Department Life Sciences and Systems BiologyUniversity of Turin, Innovation CentreTurinItaly

Personalised recommendations