Brown Spider Venom: The Identification and Biotechnological Potential of Venom Toxins

  • Daniele Chaves-Moreira
  • Dilza Trevisan-Silva
  • Luiza Helena Gremski
  • Silvio Sanches Veiga
Reference work entry
Part of the Toxinology book series (TOXI)

Abstract

Brown spiders (Loxosceles genus) are venomous arthropods that use venom for predation and defense. These spiders have also been associated with human accidents, and the primary clinical manifestations are dermonecrosis with gravitational lesion spreading, hematological disturbances, and acute renal failure. Loxosceles venom comprises a complex mixture of toxins enriched in low molecular mass proteins (5–40 kDa). Characterization of this venom revealed three highly expressed protein classes: phospholipase-D family proteins, astacin-like proteases, and inhibitor cystine knot (ICK) peptides. A recent study also showed the presence of several other venom proteins, such as serine proteases, protease inhibitors, hyaluronidases, allergen-like toxins, and translationally controlled tumor protein (TCTP), expressed at low levels in Loxosceles venom. The Brown spider phospholipase-D family proteins have been well studied, and these toxins alone induce inflammatory responses, dermonecrosis, hemolysis, thrombocytopenia, and renal failure. In addition, the functional role of hyaluronidases as spreading factors in loxoscelism has been demonstrated. However, the biological characterization of other toxins has not been reported. Nevertheless, the mechanism by which Loxosceles toxins exert noxious effects is not fully elucidated. The aim of this chapter is to provide insights into Brown spider toxins, including the identification of novel toxins using molecular and proteomics approaches, and the biological characterization and structural description of toxins using X-ray crystallography. Putative biotechnological uses of Loxosceles toxins and future perspectives in this field will also be discussed.

Keywords

Hyaluronic Acid Translationally Control Tumor Protein Venom Gland Crude Venom Spider Venom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdulkader RC, Barbaro KC, Barros EJ, Burdmann EA. Nephrotoxicity of insect and spider venoms in Latin America. Semin Nephrol. 2008;28(4):373–82.CrossRefPubMedGoogle Scholar
  2. Amson R, Pece S, Marine JC, Di Fiore PP, Telerman A. TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol. 2012;23(1):37–46.CrossRefPubMedGoogle Scholar
  3. Barbaro KC, Knysak I, Martins R, Hogan C, Winkel K. Enzymatic characterization, antigenic cross-reactivity and neutralization of dermonecrotic activity of five Loxosceles spider venoms of medical importance in the Americas. Toxicon. 2005;45(4):489–99.CrossRefPubMedGoogle Scholar
  4. Bommer U. Cellular function and regulation of the translationally controlled tumour protein TCTP. Open Allergy J. 2012;5:19–32.CrossRefGoogle Scholar
  5. Bond JS, Beynon RJ. The Astacin family of metalloendopeptidases. Protein Sci. 1995;4(7): 1247–61.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Calderon LA, Sobrinho JC, Zaqueo KD, de Moura AA, Grabner AN, Mazzi MV, Marcussi S, Nomizo A, Fernandes CF, Zuliani JP, Carvalho BM, da Silva SL, Stabeli RG, Soares AM. Antitumoral activity of snake venom proteins: new trends in cancer therapy. Biomed Res Int. 2014;2014:203639.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chaim OM, Sade YB, da Silveira RB, Toma L, Kalapothakis E, Chavez-Olortegui C, Mangili OC, Gremski W, von Dietrich CP, Nader HB, Sanches VS. Brown spider dermonecrotic toxin directly induces nephrotoxicity. Toxicol Appl Pharmacol. 2006;211(1):64–77.CrossRefPubMedGoogle Scholar
  8. Chaim OM, da Silveira RB, Trevisan-Silva D, Ferrer VP, Sade YB, Boia-Ferreira M, Gremski LH, Gremski W, Senff-Ribeiro A, Takahashi HK, Toledo MS, Nader HB, Veiga SS. Phospholipase-D activity and inflammatory response induced by Brown spider dermonecrotic toxin: endothelial cell membrane phospholipids as targets for toxicity. Biochim Biophys Acta. 2010;1811(2):84–96.CrossRefPubMedGoogle Scholar
  9. Chaim OM, Trevisan-Silva D, Chaves-Moreira D, Wille AC, Ferrer VP, Matsubara FH, Mangili OC, da Silveira RB, Gremski LH, Gremski W, Senff-Ribeiro A, Veiga SS. Brown spider (Loxosceles genus) venom toxins: tools for biological purposes. Toxins (Basel). 2011;3(3): 309–44.CrossRefGoogle Scholar
  10. Chatzaki M, Horta CC, Almeida MO, Pereira NB, Mendes TM, Dias-Lopes C, Guimaraes G, Moro L, Chavez-Olortegui C, Horta MC, Kalapothakis E. Cutaneous loxoscelism caused by Loxosceles similis venom and neutralization capacity of its specific antivenom. Toxicon. 2012;60(1):21–30.CrossRefPubMedGoogle Scholar
  11. Chaves-Moreira D, Souza FN, Fogaca RT, Mangili OC, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by Brown spider venom Phospholipase-D toxin. J Cell Biochem. 2011;112(9):2529–40.CrossRefPubMedGoogle Scholar
  12. da Silveira RB, dos Santos Filho JF, Mangili OC, Veiga SS, Gremski W, Nader HB, von Dietrich CP. Identification of proteases in the extract of venom glands from Brown spiders. Toxicon. 2002;40(6):815–22.CrossRefPubMedGoogle Scholar
  13. da Silveira RB, Wille AC, Chaim OM, Appel MH, Silva DT, Franco CR, Toma L, Mangili OC, Gremski W, Dietrich CP, Nader HB, Veiga SS. Identification, cloning, expression and functional characterization of an Astacin-like metalloprotease toxin from Loxosceles intermedia (Brown spider) venom. Biochem J. 2007a;406(2):355–63.CrossRefPubMedPubMedCentralGoogle Scholar
  14. da Silveira RB, Pigozzo RB, Chaim OM, Appel MH, Silva DT, Dreyfuss JL, Toma L, Dietrich CP, Nader HB, Veiga SS, Gremski W. Two novel dermonecrotic toxins LiRecDT4 and LiRecDT5 from Brown spider (Loxosceles intermedia) venom: from cloning to functional characterization. Biochimie. 2007b;89(3):289–300.CrossRefPubMedGoogle Scholar
  15. da Silveira RB, Chaim OM, Mangili OC, Gremski W, Dietrich CP, Nader HB, Veiga SS. Hyaluronidases in Loxosceles intermedia (Brown spider) venom are endo-beta-N-acetyl-d-hexosaminidases hydrolases. Toxicon. 2007c;49(6):758–68.CrossRefPubMedGoogle Scholar
  16. Daly NL, Craik DJ. Bioactive cystine knot proteins. Curr Opin Chem Biol. 2011;15(3):362–8.CrossRefPubMedGoogle Scholar
  17. de Castro CS, Silvestre FG, Araujo SC, de Gabriel MY, Mangili OC, Cruz I, Chavez-Olortegui C, Kalapothakis E. Identification and molecular cloning of insecticidal toxins from the venom of the Brown spider Loxosceles intermedia. Toxicon. 2004;44(3):273–80.CrossRefPubMedGoogle Scholar
  18. de Giuseppe PO, Ullah A, Silva DT, Gremski LH, Wille AC, Chaves Moreira D, Ribeiro AS, Chaim OM, Murakami MT, Veiga SS, Arni RK. Structure of a novel class II phospholipase D: catalytic cleft is modified by a disulphide bridge. Biochem Biophys Res Commun. 2011;409(4):622–7.CrossRefPubMedGoogle Scholar
  19. de Oliveira KC, Goncalves de Andrade RM, Piazza RM, Ferreira Jr JM, van den Berg CW, Tambourgi DV. Variations in Loxosceles spider venom composition and toxicity contribute to the severity of envenomation. Toxicon. 2005;45(4):421–9.CrossRefPubMedGoogle Scholar
  20. de Santi Ferrara GI, Fernandes-Pedrosa Mde F, Junqueira-de-Azevedo Ide L, Goncalves-de-Andrade RM, Portaro FC, Manzoni-de-Almeida D, Murakami MT, Arni RK, van den Berg CW, Ho PL, Tambourgi DV. SMase II, a new sphingomyelinase D from Loxosceles laeta venom gland: molecular cloning, expression, function and structural analysis. Toxicon. 2009;53(7–8):743–53.CrossRefPubMedGoogle Scholar
  21. dos Santos LD, Dias NB, Roberto J, Pinto AS, Palma MS. Brown recluse spider venom: proteomic analysis and proposal of a putative mechanism of action. Protein Pept Lett. 2009;16(8):933–43.CrossRefPubMedGoogle Scholar
  22. Dragulev B, Bao Y, Ramos-Cerrillo B, Vazquez H, Olvera A, Stock R, Algaron A, Fox JW. Upregulation of IL-6, IL-8, CXCL1, and CXCL2 dominates gene expression in human fibroblast cells exposed to Loxosceles reclusa sphingomyelinase D: insights into spider venom dermonecrosis. J Invest Dermatol. 2007;127(5):1264–6.CrossRefPubMedGoogle Scholar
  23. Eskafi FM, Norment BR. Physiological action of Loxosceles reclusa (G&M) venom on insect larvae. Toxicon. 1976;14(1):7–13.CrossRefPubMedGoogle Scholar
  24. Feitosa L, Gremski W, Veiga SS, Elias MC, Graner E, Mangili OC, Brentani RR. Detection and characterization of metalloproteinases with gelatinolytic, fibronectinolytic and fibrinogenolytic activities in Brown spider (Loxosceles intermedia) venom. Toxicon. 1998;36(7):1039–51.CrossRefPubMedGoogle Scholar
  25. Fernandes-Pedrosa F, Junqueira-de-Azevedo Ide L, Goncalves-de-Andrade RM, Kobashi LS, Almeida DD, Ho PL, Tambourgi DV. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics. 2008;9:279.CrossRefPubMedCentralGoogle Scholar
  26. Ferrer VP, de Mari TL, Gremski LH, Trevisan Silva D, da Silveira RB, Gremski W, Chaim OM, Senff-Ribeiro A, Nader HB, Veiga SS. A novel Hyaluronidase from Brown spider (Loxosceles intermedia) venom (Dietrich’s Hyaluronidase): from cloning to functional characterization. PLoS Negl Trop Dis. 2013;7(5):e2206.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser Hyaluronidase: a biological overview. Life Sci. 2007;80(21):1921–43.CrossRefPubMedGoogle Scholar
  28. Gremski LH, da Silveira RB, Chaim OM, Probst CM, Ferrer VP, Nowatzki J, Weinschutz HC, Madeira HM, Gremski W, Nader HB, Senff-Ribeiro A, Veiga SS. A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis. Mol Biosyst. 2010;6:2403–16.CrossRefPubMedGoogle Scholar
  29. Gremski LH, Trevisan-Silva D, Ferrer VP, Matsubara FH, Meissner GO, Wille AC, Vuitika L, Dias-Lopes C, Ullah A, de Moraes FR, Chavez-Olortegui C, Barbaro KC, Murakami MT, Arni RK, Senff-Ribeiro A, Chaim OM, Veiga SS. Recent advances in the understanding of Brown spider venoms: from the biology of spiders to the molecular mechanisms of toxins. Toxicon. 2014;83:91–120.CrossRefPubMedGoogle Scholar
  30. Hinojosa-Moya J, Xoconostle-Cazares B, Piedra-Ibarra E, Mendez-Tenorio A, Lucas WJ, Ruiz-Medrano R. Phylogenetic and structural analysis of translationally controlled tumor proteins. J Mol Evol. 2008;66(5):472–83.CrossRefPubMedGoogle Scholar
  31. Hogan CJ, Barbaro KC, Winkel K. Loxoscelism: old obstacles, new directions. Ann Emerg Med. 2004;44(6):608–24.CrossRefPubMedGoogle Scholar
  32. Horta CC, Oliveira-Mendes BB, do Carmo AO, Siqueira FF, Barroca TM, dos Santos Nassif Lacerda SM, De Almeida Campos Jr PH, de Franca LR, Ferreira RL, Kalapothakis E. Lysophosphatidic acid mediates the release of cytokines and chemokines by human fibroblasts treated with loxosceles spider venom. J Invest Dermatol. 2013;133(6):1682–5.CrossRefPubMedGoogle Scholar
  33. Isbister GK, Fan HW. Spider bite. Lancet. 2011;378(9808):2039–47.CrossRefPubMedGoogle Scholar
  34. Iyer S, Acharya KR. Tying the knot: the cystine signature and molecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J. 2011;278(22):4304–22.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kalapothakis E, Araujo SC, de Castro CS, Mendes TM, Gomez MV, Mangili OC, Gubert IC, Chavez-Olortegui C. Molecular cloning, expression and immunological properties of LiD1, a protein from the dermonecrotic family of Loxosceles intermedia spider venom. Toxicon. 2002;40(12):1691–9.CrossRefPubMedGoogle Scholar
  36. Kalapothakis E, Chatzaki M, Goncalves-Dornelas H, de Castro CS, Silvestre FG, Laborne FV, de Moura JF, Veiga SS, Chavez-Olortegui C, Granier C, Barbaro KC. The Loxtox protein family in Loxosceles intermedia (Mello-Leitao) venom. Toxicon. 2007;50(7):938–46.CrossRefPubMedGoogle Scholar
  37. Kimura T, Ono S, Kubo T. Molecular cloning and sequence analysis of the cDNAs encoding Toxin-Like peptides from the venom glands of Tarantula Grammostola rosea. Int J Pept. 2012;2012:731293.Google Scholar
  38. Lajoie DM, Zobel-Thropp PA, Kumirov VK, Bandarian V, Binford GJ, Cordes MH. Phospholipase D toxins of Brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates. PLoS One. 2013;8(8):e72372.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lane L, McCoppin HH, Dyer J. Acute generalized exanthematous pustulosis and Coombs-positive hemolytic anemia in a child following Loxosceles reclusa envenomation. Pediatr Dermatol. 2011;28(6):685–8.CrossRefPubMedGoogle Scholar
  40. Lucato Jr RV, Abdulkader RC, Barbaro KC, Mendes GE, Castro I, Baptista MA, Cury PM, Malheiros DM, Schor N, Yu L, Burdmann EA. Loxosceles gaucho venom-induced acute kidney injury–in vivo and in vitro studies. PLoS Negl Trop Dis. 2011;5(5):e1182.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Luciano MN, da Silva PH, Chaim OM, dos Santos VL, Franco CR, Soares MF, Zanata SM, Mangili OC, Gremski W, Veiga SS. Experimental evidence for a direct cytotoxicity of Loxosceles intermedia (Brown spider) venom in renal tissue. J Histochem Cytochem. 2004;52(4):455–67.CrossRefPubMedGoogle Scholar
  42. Machado LF, Laugesen S, Botelho ED, Ricart CA, Fontes W, Barbaro KC, Roepstorff P, Sousa MV. Proteome analysis of Brown spider venom: identification of loxnecrogin isoforms in Loxosceles gaucho venom. Proteomics. 2005;5(8):2167–76.CrossRefPubMedGoogle Scholar
  43. Makris M, Spanoudaki N, Giannoula F, Chliva C, Antoniadou A, Kalogeromitros D. Acute generalized Exanthematous Pustulosis (AGEP) triggered by a spider bite. Allergol Int. 2009;58(2):301–3.CrossRefPubMedGoogle Scholar
  44. Matsubara FH, Gremski LH, Meissner GO, Constantino Lopes ES, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS. A novel ICK peptide from the Loxosceles intermedia (Brown spider) venom gland: cloning, heterologous expression and immunological cross-reactivity approaches. Toxicon. 2013;71:147–58.CrossRefPubMedGoogle Scholar
  45. Murakami MT, Fernandes-Pedrosa MF, Tambourgi DV, Arni RK. Structural basis for metal ion coordination and the catalytic mechanism of sphingomyelinases D. J Biol Chem. 2005;280(14):13658–64.CrossRefPubMedGoogle Scholar
  46. Palagi A, Koh JM, Leblanc M, Wilson D, Dutertre S, King GF, Nicholson GM, Escoubas P. Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry. J Proteomics. 2013;80:292–310.CrossRefPubMedGoogle Scholar
  47. Paludo KS, Biscaia SM, Chaim OM, Otuki MF, Naliwaiko K, Dombrowski PA, Franco CR, Veiga SS. Inflammatory events induced by Brown spider venom and its recombinant dermonecrotic toxin: a pharmacological investigation. Comp Biochem Physiol C Toxicol Pharmacol. 2009;149(3):323–33.CrossRefPubMedGoogle Scholar
  48. Pippirs U, Mehlhorn H, Antal AS, Schulte KW, Homey B. Acute generalized exanthematous pustulosis following a Loxosceles spider bite in Great Britain. Br J Dermatol. 2009;161:208–9.CrossRefPubMedGoogle Scholar
  49. Ribeiro RO, Chaim OM, da Silveira RB, Gremski LH, Sade YB, Paludo KS, Senff-Ribeiro A, de Moura J, Chavez-Olortegui C, Gremski W, Nader HB, Veiga SS. Biological and structural comparison of recombinant phospholipase D toxins from Loxosceles intermedia (Brown spider) venom. Toxicon. 2007;50(8):1162–74.CrossRefPubMedGoogle Scholar
  50. Sade YB, Boia-Ferreira M, Gremski LH, da Silveira RB, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS. Molecular cloning, heterologous expression and functional characterization of a novel translationally-controlled tumor protein (TCTP) family member from Loxosceles intermedia (Brown spider) venom. Int J Biochem Cell Biol. 2011;44(1):170–7.CrossRefPubMedGoogle Scholar
  51. Sales PB, Santoro ML. Nucleotidase and DNase activities in Brazilian snake venoms. Comp Biochem Physiol C Toxicol Pharmacol. 2008;147(1):85–95.CrossRefPubMedGoogle Scholar
  52. Sartim MA, Riul TB, Del Cistia-Andrade C, Stowell SR, Arthur CM, Sorgi CA, Faccioli LH, Cummings RD, Dias-Baruffi M, Sampaio SV. Galatrox, a C-type lectin in Bothrops atrox snake venom, selectively binds LacNAc-terminated glycans and possesses the capacity to induce acute inflammation. Glycobiology. 2014.Google Scholar
  53. Schroeder FC, Taggi AE, Gronquist M, Malik RU, Grant JB, Eisner T, Meinwald J. NMR-spectroscopic screening of spider venom reveals sulfated nucleosides as major components for the brown recluse and related species. Proc Natl Acad Sci U S A. 2008;105(38):14283–7.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Silvestre FG, de Castro CS, de Moura JF, Giusta MS, De Maria M, Alvares ES, Lobato FC, Assis RA, Goncalves LA, Gubert IC, Chavez-Olortegui C, Kalapothakis E. Characterization of the venom from the Brazilian Brown spider Loxosceles similis Moenkhaus, 1898 (Araneae, Sicariidae). Toxicon. 2005;46(8):927–36.CrossRefPubMedGoogle Scholar
  55. Tambourgi DV, Magnoli FC, van den Berg CW, Morgan BP, de Araujo PS, Alves EW, Da Silva WD. Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis. Biochem Biophys Res Commun. 1998;251(1):366–73.CrossRefPubMedGoogle Scholar
  56. Tambourgi DV, De Sousa Da Silva M, Billington SJ, Goncalves De Andrade RM, Magnoli FC, Songer JG, Van Den Berg CW. Mechanism of induction of complement susceptibility of erythrocytes by spider and bacterial sphingomyelinases. Immunology. 2002;107(1):93–101.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Trevisan-Silva D, Bednaski AV, Gremski LH, Chaim OM, Veiga SS, Senff-Ribeiro A. Differential metalloprotease content and activity of three Loxosceles spider venoms revealed using two-dimensional electrophoresis approaches. Toxicon. 2013;76:11–22.CrossRefPubMedGoogle Scholar
  58. van Meeteren LA, Frederiks F, Giepmans BN, Pedrosa MF, Billington SJ, Jost BH, Tambourgi DV, Moolenaar WH. Spider and bacterial sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine. J Biol Chem. 2004;279(12):10833–6.CrossRefPubMedGoogle Scholar
  59. Veiga SS, da Silveira RB, Dreyfus JL, Haoach J, Pereira AM, Mangili OC, Gremski W. Identification of high molecular weight serine-proteases in Loxosceles intermedia (Brown spider) venom. Toxicon. 2000a;38(6):825–39.CrossRefPubMedGoogle Scholar
  60. Veiga SS, Feitosa L, dos Santos VL, de Souza GA, Ribeiro AS, Mangili OC, Porcionatto MA, Nader HB, Dietrich CP, Brentani RR, Gremski W. Effect of Brown spider venom on basement membrane structures. Histochem J. 2000b;32(7):397–408.CrossRefPubMedGoogle Scholar
  61. Vuitika L, Gremski LH, Belisario-Ferrari MR, Chaves-Moreira D, Ferrer VP, Senff-Ribeiro A, Chaim OM, Veiga SS. Brown spider Phospholipase-D containing a conservative mutation (D233E) in the catalytic site: identification and functional characterization. J Cell Biochem. 2013;114(11):2479–92.CrossRefPubMedGoogle Scholar
  62. Wille AC, Chaves-Moreira D, Trevisan-Silva D, Magnoni MG, Boia-Ferreira M, Gremski LH, Gremski W, Chaim OM, Senff-Ribeiro A, Veiga SS. Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant Phospholipase-D from Loxosceles intermedia (Brown spider) venom. Toxicon. 2013;67:17–30.CrossRefPubMedGoogle Scholar
  63. Windley MJ, Herzig V, Dziemborowicz SA, Hardy MC, King GF, Nicholson GM. Spider-venom peptides as bioinsecticides. Toxins (Basel). 2012;4(3):191–227.CrossRefGoogle Scholar
  64. Wright RP, Elgert KD, Campbell BJ, Barrett JT. Hyaluronidase and esterase activities of the venom of the poisonous brown recluse spider. Arch Biochem Biophys. 1973;159(1):415–26.CrossRefPubMedGoogle Scholar
  65. Young AR, Pincus SJ. Comparison of enzymatic activity from three species of necrotising arachnids in Australia: Loxosceles rufescens, Badumna insignis and Lampona cylindrata. Toxicon. 2001;39(2–3):391–400.CrossRefPubMedGoogle Scholar
  66. Zhao H, Kong Y, Wang H, Yan T, Feng F, Bian J, Yang Y, Yu H. A defensin-like antimicrobial peptide from the venoms of spider, Ornithoctonus hainana. J Pept Sci. 2011;17(7):540–4.CrossRefPubMedGoogle Scholar
  67. Zobel-Thropp PA, Correa SM, Garb JE, Binford GJ. Spit and venom from scytodes spiders: a diverse and distinct cocktail. J Proteome Res. 2014;13(2):817–35.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Daniele Chaves-Moreira
    • 1
  • Dilza Trevisan-Silva
    • 1
  • Luiza Helena Gremski
    • 1
    • 2
  • Silvio Sanches Veiga
    • 1
  1. 1.Department of Cell BiologyFederal University of ParanáCuritibaBrazil
  2. 2.Departament of Medical PathologyClinical Hospital, Federal University of ParanáCuritibaBrazil

Personalised recommendations