Skip to main content

Anticoagulant and Membrane Damaging Properties of Snake Venom Phospholipase A2 Enzymes

  • Reference work entry
  • First Online:
Snake Venoms

Part of the book series: Toxinology ((TOXI))

Abstract

Snake venom is a complex mixture of pharmacologically active proteins and polypeptides in addition to containing some minor nonprotein components. Snake venom plays an important role in incapacitating and immobilizing, as well as in digesting prey after being swallowed. Phospholipase A2 (PLA2) is one of the major toxic enzymes present invariably in all snake venoms. Despite their structural similarities, snake venom PLA2 enzymes differ greatly in their pharmacological properties and biological activities. Venom PLA2s most likely prolong the blood coagulation through hydrolysis of and/or binding to procoagulant phospholipids essential for clotting process. In addition to enzymatic mechanism of anticoagulant effect, anticoagulant PLA2 enzymes strongly extend blood coagulation by a mechanism that is independent of phospholipids hydrolysis and is achieved mostly by inhibiting the blood coagulation factor(s). Studies on such anticoagulant PLA2s may contribute to understand different “vulnerable” sites in the coagulation cascade which may further help to design novel strategies to develop anticoagulant therapeutics to treat cardiovascular disorder (CVD).

Further, most of the toxic effects of snake venom PLA2s are exerted by hydrolysis of membrane phospholipids. Different isoforms of venom PLA2 can display dramatically different affinities for bio-membranes, composed of different phospholipids polar head groups and fatty acyl chains, resulting in their differential membrane damaging activity. This differential affinity of PLA2s towards phospholipids of different bio-membranes has been used extensively to explore the physical structure of phospholipids in biological membranes. Study of membrane damaging activities of venom PLA2s will be helpful in exploring different membrane properties. It is exemplary to mention that only a few reports on membrane hydrolyzing property of snake venom PLA2s are available. Therefore, more precise studies are required to understand the complete mechanism(s) of membrane damage and subsequent toxicity of PLA2 enzymes from snake venom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boffa MC, Rothen C, Verheij HM, Verger R, deHaas GH. Correlation of enzymatic activity and anticoagulant properties of phospholipase A2. In: Eaker D, Walstrom T, editors. Natural toxins. Oxford: Pergamon; 1980. p. 131–8.

    Chapter  Google Scholar 

  • Buckland A, Wilton D. The antibacterial properties of secreted phospholipases A2. Biochim Biophys Acta. 2000;1488:71–82.

    Article  CAS  PubMed  Google Scholar 

  • Condrea E, Fletcher JE, Rapuano BE, Yang CC, Rosenberg P. Effect of modification of one histidine residue on the enzymatic and pharmacological properties of a toxic phospholipase A2 from Naja nigricollis snake venom and less toxic phospholipases A2 from Hemachatus haemachatus and Naja naja atra snake venoms. Toxicon. 1981;19:61–71.

    Article  CAS  PubMed  Google Scholar 

  • Condrea E, Rapuano BE, Fletcher JE, Yang CC, Rosenberg P. Ethoxyformylation and guanidination of snake venom phospholipases A2: effects on enzymatic activity, lethality and some pharmacological properties. Toxicon. 1983;21:209–18.

    Article  CAS  PubMed  Google Scholar 

  • De SS. Physico-chemical studies on hemolysin. J Indian Chem Soc. 1944;21:290.

    CAS  Google Scholar 

  • Doley R, Mukherjee AK. Purification and characterization of an anticoagulant phospholipase A2 from Indian monocled cobra (Naja kaouthia) venom. Toxicon. 2003;41:81–91.

    Article  CAS  PubMed  Google Scholar 

  • Doley R, King GF, Mukherjee AK. Differential hydrolysis of erythrocyte and mitochondrial membrane phospholipids by two phospholipase A2 isoenzymes (NK-PLA2-I and NK-PLA2-II) from the venom of the Indian monocled cobra Naja kaouthia. Arch Biochem Biophys. 2004;425:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Doley R, Zhou X, Kini RM. Snake venom phospholipase A2 enzymes. In: Handbook of venoms and toxins of reptiles. CRC Press/Taylor and Francis Group; 2009. p. 173–205.

    Google Scholar 

  • Dowben R. Lysosomes and protein regulation in eukaryotic cells. In: Cell biology. New York: Harper & Row; 1971. p. 309–11.

    Google Scholar 

  • Dutta S, Gogoi D, Mukherjee AK. Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: inhibition of anticoagulant activity by low molecular weight heparin. Biochimie. 2015;110:93–106.

    Article  CAS  PubMed  Google Scholar 

  • Edwards SH, Thompson D, Baker SF, Wood SP, Wilton DC. The crystal structure of the H48Q active site mutant of human group IIA secreted PLA2 at 1.5 Å resolution provides an insight into the catalytic mechanism. Biochemistry. 2002;41:15468–76.

    Article  CAS  PubMed  Google Scholar 

  • Faure G, Gowda TV, Maroun RC. Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics. BMC Struct Biol. 2007;82:1–19.

    Google Scholar 

  • Huang MZ, Gopalakrishnakone P, Chung MC, Kini RM. Complete amino acid sequence of an acidic, cardiotoxic phospholipase A2 from the venom of Ophiophagus hannah (king cobra): a novel cobra venom enzyme with “pancreatic loop”. Arch Biochem Biophys. 1997;338:150–6.

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi JP, Gowda TV. Geographical variation in India in the composition and lethal potency of Russell’s viper (Vipera russelli) venom. Toxicon. 1988;26:257–64.

    Article  CAS  PubMed  Google Scholar 

  • Kaasgaard T, Leidy C, Ipsen JH, Mouritsen OG, Jorgensen K. In situ atomic force microscope imaging of supported bilayers. Single Mol. 2001;2:105–8.

    Article  CAS  Google Scholar 

  • Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, Kaur P, Kumar S, Dey S, Sharma S, Vrielink A, Betzel C, Takeda S, Arni RK, Singh TP, Kini RM. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 2011;278:4544–76.

    Article  CAS  PubMed  Google Scholar 

  • Karp G. Cell and molecular biology: concept and experiments. New York: Wiley; 1996. p. 119–66.

    Google Scholar 

  • Kasturi S, Gowda TV. Purification and characterization of a major phospholipase A2 from Russell’s viper (Vipera russelii) venom. Toxicon. 1989;27:229–37.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Phospholipase A2- a complex multifunctional protein puzzle. In: Kini RM, editor. Venom phospholipase A2 enzymes: structure, function and mechanism. Chichester: Wiley; 1997. p. 1–28.

    Google Scholar 

  • Kini RM. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon. 2005;45:1147–61.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J. 2006;397:377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kini RM, Evans HJ. Structure-function relationships of phospholipases. The anticoagulant region of phospholipase A2. J Biol Chem. 1987;262:14402–7.

    CAS  PubMed  Google Scholar 

  • Kini RM, Evans HJ. A model to explain the pharmacological effects of snake venom phospholipase A2. Toxicon. 1989;27:613–35.

    Article  CAS  PubMed  Google Scholar 

  • Koh CY, Kini RM. From snake venom toxins to therapeutics- cardiovascular examples. Toxicon. 2012;59:497–506.

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol. 2008;9:99–111.

    Article  CAS  PubMed  Google Scholar 

  • Lomonte B, Gutiérrez JM. Phospholipases A2 from Viperidae snake venoms: how do they induce skeletal muscle damage? Acta Chim Slov. 2011;58:647–59.

    CAS  PubMed  Google Scholar 

  • Mounier CM, Luchetta P, Lecut C, Koduri RS, Faure G, Lambeau G, Valentin A, Singer A, Ghomashchi F, Beguin S, Gelb MH, Bon C. Basic residues of human group IIA phospholipase A2 are important for binding to factor Xa and prothrombinase inhibition comparison with other mammalian secreted phospholipase A2. Eur J Biochem. 2000;267:4960–9.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK. Correlation between the phospholipids domains of the target cell membrane and the extent of Naja kaouthia PLA2-induced membrane damage: evidence of distinct catalytic and cytotoxic sites in PLA2 molecules. Biochim Biophys Acta. 2007;1770:187–95.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK. Non-covalent interaction of phospholipase A2 (PLA2) and kaouthiotoxin (KTX) from venom of Naja kaouthia exhibits marked synergism to potentiate their cytotoxicity on target cells. J Venom Res. 2010;1:37–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee AK. A major phospholipase A2 from Daboia russelli russelii venom shows potent anticoagulant action via thrombin inhibition and binding with plasma phospholipids. Biochimie. 2014;99:153–61.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Mackessy SP. Biochemical and pharmacological properties of a new thrombin-like serine protease (Russelobin) from the venom of Russell’s Viper (Daboia russelii russelii) and assessment of its therapeutic potential. Bichem Biophys Acta Gen Subj. 1830;2013:3476–88.

    Google Scholar 

  • Mukherjee S, Maxfield MR. Membrane domains. Annu Rev Cell Dev Biol. 2004;20:839–66.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Ghosal SK, Maity CR. Lysosomal membrane stabilization by α-tocopherol against the damaging action of Vipera russelli venom phospholipase A2. Cell Mol Life Sci. 1997;53:152–5.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Ghosal SK, Maity CR. Effect of oral supplementation of vitamin E on the hemolysis and erythrocyte phospholipids splitting action of cobra and viper venoms. Toxicon. 1998a;36:657–64.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Ghosal SK, Maity CR. Effect of dietary supplementation of vitamin E in partial inhibition of Russell’s viper venom phospholipase A2 induced hepatocellular and microsomal membrane damage. Acta Physiol Hung. 1998b;85:367–74.

    CAS  Google Scholar 

  • Mukherjee AK, Ghosal SK, Maity CR. Some biochemical properties of Russell’s viper (Daboia russelii) venom from Eastern India: correlation with clinical pathological manifestation in Russell’s viper bite. Toxicon. 2000;38:163–75.

    Article  CAS  Google Scholar 

  • Mukherjee AK, Kalita B, Thakur R. Two acidic, anticoagulant PLA2 isoenzymes purified from the venom of monocled cobra Naja kaouthia exhibit different potency to inhibit thrombin and factor Xa via phospholipids independent, non-enzymatic mechanism. PLoS One. 2014;9(8), e101334.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murakami MT, Gabdoulkhakov A, Genov N, Cintra AC, Betzel C, Arni RK. Insight into the metal ion binding in phospholipases A2: ultra high-resolution crystal structures of an acidic phospholipase A2 in the Ca2+ free and bound states. Biochimie. 2006;88:543–9.

    Article  CAS  PubMed  Google Scholar 

  • Osipov AV, Filkin SY, Makarova YV, Tsetlin VI, Utkin YN. A new type of thrombin inhibitor, on cytotoxic phospholipase A2, from the Naja haje cobra venom. Toxicon. 2010;55:186–94.

    Article  CAS  PubMed  Google Scholar 

  • Phui YJS, Nanling G, Afifiyan F, Donghui M, Lay PS, Armugam A, Jeyaseelan K. Snake postsynaptic neurotoxins: gene structure, phylogeny and applications in research and therapy. Biochimie. 2004;86:137–49.

    Article  Google Scholar 

  • Rangel J, Quesada O, Gutiérrez JM, Angulo Y, Lomonte B. Membrane cholesterol modulates the cytolytic mechanism of myotoxin II, a Lys49 phospholipase A2 homologue from the venom of Bothropsasper. Cell Biochem Funct. 2011;29:365–70.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg P. The relationship between enzymatic activity and pharmacological properties of phospholipases. In: Harris JB, editor. Natural toxins. Oxford: Oxford University Press; 1986. p. 129–74.

    Google Scholar 

  • Sahu JK, Majumdar G, Maity CR. Prospective study of some enzymes in different parts of the rat’s brain following envenomation. Snake. 1991;23:65–70.

    CAS  Google Scholar 

  • Saikia D, Bordoloi NB, Chattopadhyay P, Choklingam S, Ghosh SS, Mukherjee AK. Differential mode of attack on membrane phospholipids by an acidic phospholipase A2 (RVVA-PLA2-I) from Daboia russelli venom. Biochim Biophys Acta. 2012;1818:3149–57.

    Article  CAS  PubMed  Google Scholar 

  • Saikia D, Thakur R, Mukherjee AK. An acidic phospholipase A2 (RVVA-PLA2-I) purified from Daboia russelli venom exerts its anticoagulant activity by enzymatic hydrolysis of plasma phospholipids and by non-enzymatic inhibition of factor Xa in a phospholipids/Ca2+ independent manner. Toxicon. 2011;57:841–50.

    Article  CAS  PubMed  Google Scholar 

  • Saikia D, Majumdar M, Mukherjee AK. Mechanism of in vivo anticoagulant and haemolytic activity by a neutral phospholipase A2 purified from Daboia russelii russelii venom: correlation with clinical manifestations in Russell’s viper envenomed patients. Toxicon. 2013;76:291–300.

    Article  CAS  PubMed  Google Scholar 

  • Samy RP, Gopalakrishnakone P, Bow H, Puspharaj PN, Chow VTK. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: novel bactericidal and membrane damaging activities. Biochimie. 2010;92:1854–66.

    Article  Google Scholar 

  • Scott DL. Phospholipase A2 structure and catalytic properties. In: Kini RM, editor. Venom phospholipase A2 enzymes: structure, function and mechanism. Chichester: Wiley; 1997. p. 97–128.

    Google Scholar 

  • Scott DL, White SP, Browning JL, Rosa JJ, Gelb MH, Sigler PB. Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science. 1991;254:1007–2010.

    Article  CAS  PubMed  Google Scholar 

  • Sharp JD, White DL, Chiou XG, Goodson T, Gamboa GC, McClure D, Burgett S, Hoskins J, Skatrud PL, Sportsman JR, Becker GW, Kang LH, Roberts EF, Kramer RM. Molecular cloning and expression of human Ca2+-sensitive cytosolic phospholipase A2. J Biol Chem. 1991;266:14850–3.

    CAS  PubMed  Google Scholar 

  • Shukla SD, Hanahan DJ. Identification of domains of phosphatidylcholine in human erythrocyte plasma membranes. J Biol Chem. 1982;257:2908–11.

    CAS  PubMed  Google Scholar 

  • Stahelin RV, Cho W. Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry. 2001;40:4672–8.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson S, Kini RM, Evans HJ. The inhibition of clotting complexes of the extrinsic coagulation cascade by the phospholipase A2 isoenzymes from Naja nigricollis venom. Thromb Res. 1989;55:481–91.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson S, Kini RM, Evans HJ. The basic phospholipase A2 from Naja nigricollis venom inhibits the prothrombinase complex by a novel nonenzymatic mechanism. Biochemistry. 1990;29:7742–6.

    Article  CAS  PubMed  Google Scholar 

  • Vargas LJ, Londoño M, Quintana JC, Rua C, Segura C, Lomonte B, Núñez V. An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. Comp Biochem Physiol Part B. 2012;16:341–7.

    Article  Google Scholar 

  • Verheij HM, Boffa MC, Rothen C, Bryckaert MC, Verger R, De Haas GH. Correlation of enzymatic activity and anticoagulant properties of phospholipase A2. Eur J Biochem. 1980;112:25–32.

    Article  CAS  PubMed  Google Scholar 

  • Winget JM, Pan YH, Bahnson BJ. The interfacial binding surface of phospholipase A2s. Biochim Biophys Acta. 1761;2006:1260–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis K. Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Saikia, D., Mukherjee, A.K. (2017). Anticoagulant and Membrane Damaging Properties of Snake Venom Phospholipase A2 Enzymes. In: Inagaki, H., Vogel, CW., Mukherjee, A., Rahmy, T. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6410-1_18

Download citation

Publish with us

Policies and ethics