Skip to main content

Molecular Clocks, Human Evolution

  • Living reference work entry
  • First Online:
  • 233 Accesses

Definition

Human evolution (molecular clocks). The timescale of human evolution and migration can be estimated from genetic data that have been sampled from living, historical, and ancient humans. This can be done using statistical methods based on the molecular clock hypothesis.

Introduction

The timescale of human evolutionary origins and migration across the globe has been a long-standing focus of scientific research. Genetic studies of the human evolutionary timescale were first performed in the 1960s, with the divergence time between humans and chimpanzees being estimated using data from the albumin protein (Sarich and Wilson 1967). The complete sequence of the human mitochondrial genome, consisting of about 16.5 thousand nucleotides, was published in 1981 (Anderson et al. 1981). Two decades later, the International Human Genome Consortium (2001) released a complete draft sequence of the much larger nuclear genome, comprising 3.2 billion nucleotides. DNA sequences of mitochondrial...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G., 1981. Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.

    Article  Google Scholar 

  • Balloux, F., 2010. The worm in the fruit of the mitochondrial DNA tree. Heredity, 104, 419–420.

    Article  Google Scholar 

  • Endicott, P., Ho, S. Y. W., Metspalu, M., and Stringer, C., 2009. Evaluating the mitochondrial timescale of human evolution. Trends in Ecology and Evolution, 24, 515–521.

    Article  Google Scholar 

  • Endicott, P., Ho, S. Y. W., and Stringer, C., 2010. Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins. Journal of Human Evolution, 59, 87–95.

    Article  Google Scholar 

  • Goodman, M., 1985. Rates of molecular evolution: the hominoid slowdown. BioEssays, 3, 9–14.

    Article  Google Scholar 

  • Henn, B. M., Gignoux, C. R., Feldman, M. W., and Mountain, J. L., 2009. Characterizing the time dependency of human mitochondrial DNA mutation rate estimates. Molecular Biology and Evolution, 26, 217–230.

    Article  Google Scholar 

  • Ho, S. Y. W., Lanfear, R., Bromham, L., Phillips, M. J., Soubrier, J., Rodrigo, A. G., and Cooper, A., 2011. Time-dependent rates of molecular evolution. Molecular Ecology, 20, 3087–3101.

    Article  Google Scholar 

  • Howell, N., Smejkal, C. B., Mackey, D. A., Chinnery, P. F., Turnbull, D. M., and Herrnstadt, C., 2003. The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. American Journal of Human Genetics, 72, 659–670.

    Article  Google Scholar 

  • International Human Genome Consortium, 2001. Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  Google Scholar 

  • Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., de Filippo, C., Li, H., Mallick, S., Dannemann, M., Fu, Q., Kircher, M., Kuhlwilm, M., Lachmann, M., Meyer, M., Ongyerth, M., Siebauer, M., Theunert, C., Tandon, A., Moorjani, P., Pickrell, J., Mullikin, J. C., Vohr, S. H., Green, R. E., Hellmann, I., Johnson, P. L., Blanche, H., Cann, H., Kitzman, J. O., Shendure, J., Eichler, E. E., Lein, E. S., Bakken, T. E., Golovanova, L. V., Doronichev, V. B., Shunkov, M. V., Derevianko, A. P., Viola, B., Slatkin, M., Reich, D., Kelso, J., and Pääbo, S., 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–49.

    Article  Google Scholar 

  • Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L. F., Maricic, T., Good, J. M., Marques-Bonet, T., Alkan, C., Fu, Q., Mallick, S., Li, H., Meyer, M., Eichler, E. E., Stoneking, M., Richards, M., Talamo, S., Shunkov, M. V., Derevianko, A. P., Hublin, J.-J., Kelso, J., Slatkin, M., and Pääbo, S., 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468, 1053–1060.

    Article  Google Scholar 

  • Reich, D., Patterson, N., Kircher, M., Delfin, F., Nandineni, M. R., Pugach, I., Ko, A. M.-S., Ko, Y.-C., Jinam, T. A., Phipps, M. E., Saitou, N., Wollstein, A., Kayser, M., Pääbo, S., and Stoneking, M., 2011. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. American Journal of Human Genetics, 89, 516–528.

    Article  Google Scholar 

  • Roach, J. C., Glusman, G., Smith, A. F. A., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant, K. P., Goodman, N., Bamshad, M., Shendure, J., Drmanac, R., Jorde, L. B., Hood, L., and Galas, D. J., 2010. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636–639.

    Article  Google Scholar 

  • Sarich, V. M., and Wilson, A. C., 1967. Immunological time scale for hominid evolution. Science, 158, 1200–1203.

    Article  Google Scholar 

  • Scally, A., and Durbin, R., 2012. Revising the human mutation rate: implications for understanding human evolution. Nature Reviews Genetics, 13, 745–753.

    Article  Google Scholar 

  • Shapiro, B., and Hofreiter, M., 2010. Analysis of ancient human genomes. BioEssays, 32, 388–391.

    Article  Google Scholar 

  • Soares, P., Ermini, L., Thomson, N., Mormina, M., Rito, T., Röhl, A., Salas, A., Oppenheimer, S., Macaulay, V., and Richards, M. B., 2009. Correcting for purifying selection: an improved human mitochondrial molecular clock. American Journal of Human Genetics, 84, 740–759.

    Article  Google Scholar 

  • Steiper, M. E., Young, N. M., and Sukrarna, T. Y., 2004. Genomic data support the hominoid slowdown and an early Oligocene estimate for the hominoid–cercopithecoid divergence. Proceedings of the National Academy of Sciences of the USA, 101, 17021–17026.

    Article  Google Scholar 

  • Torroni, A., Achilli, A., Macaulay, V., Richards, M., and Bandelt, H.-J., 2006. Harvesting the fruit of the human mtDNA tree. Trends in Genetics, 22, 339–345.

    Article  Google Scholar 

  • Welch, J. J., and Bromham, L., 2005. Molecular dating when rates vary. Trends in Ecology and Evolution, 20, 320–327.

    Article  Google Scholar 

  • Zuckerkandl, E., and Pauling, L., 1962. Molecular disease, evolution and genic heterogeneity. In Kasha, M., and Pullman, B. (eds.), Horizons in Biochemistry. New York: Academic Press, pp. 189–225.

    Google Scholar 

  • Zuckerkandl, E., and Pauling, L., 1965. Evolutionary divergence and convergence in proteins. In Bryson, V., and Vogel, H. J. (eds.), Evolving Genes and Proteins. New York: Academic Press, pp. 97–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Y. W. Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Ho, S.Y.W., Endicott, P. (2014). Molecular Clocks, Human Evolution. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_79-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_79-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics