Encyclopedia of Scientific Dating Methods

Living Edition
| Editors: W. Jack Rink, Jeroen Thompson

Radioactive Decay Constants: A Review

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6326-5_264-1

Definition

The radioactive decay constant (λ) is a characteristic of unstable radionuclides (see chart of the nuclides) that spontaneously decay at different rates to a more stable atomic configuration; the larger the decay constant, the more rapidly the parent radionuclide is depleted with time. The basic formulation of the radioactive decay equation is based on the principle that the number of decay events of any radioactive parent atom is proportional to the number of these atoms present at any given time (Rutherford and Soddy 1902). This basic principle has been transformed into the law of radioactive decay N = N0 e−λt, which states that given an initial number N0 of radioactive parent nuclei at start time t = 0, the number of radioactive nuclei remaining at time t is given by N. Related to the decay constant is the half-life t½ of a radioactive nucleus: t½ = ln 2/λ. The half-life is the time in which half the number of parent nuclides have decayed.

Introduction

The determination...

Keywords

Decay Constant Radioactive Decay Geological Material Decay Event Parent Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Amelin, Y., and Zaitsev, A. N., 2002. Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations. Geochimica et Cosmochimica Acta, 66, 2399–2419.CrossRefGoogle Scholar
  2. Audi, G., Bersillon, O., Blachot, J., and Wapstra, A. H., 2003. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A, 729, 3–128.CrossRefGoogle Scholar
  3. Begemann, F., Ludwig, K. R., Lugmair, G. W., Min, K., Nyquist, L. E., Patchett, P. J., Renne, P. R., Shih, C.-Y., Villa, I. M., and Walker, R. J., 2001. Call for an improved set of decay-constants for geochronological use. Geochimica et Cosmochimica Acta, 65, 111–121.CrossRefGoogle Scholar
  4. Brown, F., Hanna, G. C., and Yaffe, L., 1953. The radioactive decay of 41Ca. Proceedings of the Royal Society of London Series A, 220, 203–219.CrossRefGoogle Scholar
  5. Cheng, H., Edwards, R. L., Shen, C.-C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., and Alexander, E. C., Jr., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371–372, 82–91.CrossRefGoogle Scholar
  6. Cook, D. L., Walker, R. J., Horan, M. F., Wasson, J. T., and Morgan, J. W., 2004. Pt-Re-Os systematics of group IIAB and IIIAB iron meteorites. Geochimica et Cosmochimica Acta, 68, 1413–1431.CrossRefGoogle Scholar
  7. Dauphas, N., and Chaussidon, M., 2011. A perspective from extinct radionuclides on a young stellar object: the sun and its accretion disk. Annual Reviews of Earth and Planetary Science, 39, 351–386.CrossRefGoogle Scholar
  8. Fifield, L. K., and Morgenstern, U., 2009. Silicon-32 as a tool for dating the recent past. Quaternary Geochronology, 4, 400–405.CrossRefGoogle Scholar
  9. Friedman, A. M., Milsted, J., Metta, D., Henderson, D., Lerner, J., Harkness, A. L., and Rok Op, D. J., 1966. Alpha decay half lives of 148Gd 150Gd and 146Sm. Radiochimica Acta, 5, 192–194.Google Scholar
  10. Godwin, H., 1962. Half-life of radiocarbon. Nature, 195, 984.CrossRefGoogle Scholar
  11. Hiess, J., Condon, D. J., McLean, N., and Noble, S. R., 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 355, 1610–1614.CrossRefGoogle Scholar
  12. Holden, N. E., and Hoffman, D. C., 2000. Spontaneous fission half-lives for ground state nuclides (Technical report). Pure and Applied Chemistry, 72, 1525–1562.CrossRefGoogle Scholar
  13. Honda, M., and Imamura, M., 1971. Half-life of Mn53. Physical Review C, 4, 1182–1188.CrossRefGoogle Scholar
  14. Jaffey, A. H., Flynn, K. F., Glendenin, L., Bentley, W. C., and Essling, A. M., 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4, 1889–1906.CrossRefGoogle Scholar
  15. Kinoshita, N., Paul, M., Kashiv, Y., Collon, P., Deibel, C. M., DiGiovine, B., Greene, J. P., Henderson, D. J., Jiang, C. L., Marley, S. T., Nakanishi, T., Pardo, R. C., Rehm, K. E., Robertson, D., Scott, R., Schmitt, C., Tang, X. D., Vondrasek, R., and Yokoyama, A., 2012. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. Science, 335, 1614–1617.CrossRefGoogle Scholar
  16. Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gostomski, C., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A., 2010. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B, 268, 187–191.CrossRefGoogle Scholar
  17. Kossert, K., 2003. Half-life measurements of 87Rb by liquid scintillation counting. Applied Radiation and Isotopes, 59, 377–382.CrossRefGoogle Scholar
  18. Kossert, K., Jörg, G., Nähle, O., and Lierse v. Gostomski, C., 2009. High-precision measurement of the half-life of 147Sm. Applied Radiation and Isotopes, 67, 1702–1706.CrossRefGoogle Scholar
  19. Kossert, K., Jörg, G., and Lierse v. Gostomski, C., 2013. Experimental half-life determination of 176Lu. Applied Radiation and Isotopes, 81, 140–145.CrossRefGoogle Scholar
  20. LeRoux, L. J., and Glendenin, L. F., 1963. Half-life of 232Th. In Proceedings of the National Meeting on Nuclear Energy, Pretoria, South Africa, April 1963, pp. 83–94.Google Scholar
  21. Libby, W. F., 1952. Radiocarbon Dating. Chicago: University of Chicago Press.Google Scholar
  22. Mattinson, J. M., 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA_TIMS measurements of closed-system natural zircon samples. Chemical Geology, 275, 186–198.CrossRefGoogle Scholar
  23. Minster, J.-F., Birck, J.-L., and Allègre, C. J., 1982. Absolute age of formation of chondrites studied by the 87Rb-87Sr method. Nature, 300, 414–419.CrossRefGoogle Scholar
  24. National Nuclear Data Center Chart of the Nuclides (revision June 1, 2012), Nuclear Wallet Data, Brookhaven National Laboratory. http://www.nndc.bnl.gov/chart/
  25. Neumann, W., and Huster, E., 1976. Discussion of the 87Rb half-life determined by absolute counting. Earth and Planetary Science Letters, 33, 277–288.CrossRefGoogle Scholar
  26. Nishiizumi, K., 2004. Preparation of 26Al AMS standards. Nuclear Instruments and Methods in Physics Research B, 223–224, 388–392.CrossRefGoogle Scholar
  27. Norris, T. L., Gancarz, A. J., Rokop, D. J., and Thomas, K. W., 1983. Half-life of 26Al. Journal of Geophysical Research, 88, B331–B333.CrossRefGoogle Scholar
  28. Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., and Min, K., 2011. Response to the comment by W.H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology by P.R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 5097–5100.CrossRefGoogle Scholar
  29. Robert, J., Miranda, C. F., and Muxart, R., 1969. Mesure de la période du protactinium-231 par microcalorimétrie. Radiochimica Acta, 11, 104–108.Google Scholar
  30. Rotenberg, E., Davis, D., Amelin, Y., Ghosh, S., and Bergquist, B. A., 2012. Determination of the decay-constant of 87Rb by laboratory accumulation of 87Sr. Geochimica et Cosmochimica Acta, 85, 41–57.CrossRefGoogle Scholar
  31. Rugel, G., Faestermann, T., Knie, K., Korschinek, G., Poutivtsev, M., Schumann, D., Kivel, N., Günther-Leopold, I., Weinreich, R., and Wohlmuther, M., 2009. New Measurement of the 60Fe Half-Life. Physical Review Letters, 103, 072502.CrossRefGoogle Scholar
  32. Rutherford, E., and Soddy, F., 1902. LXXXIV. —The radioactivity of thorium compounds. II. The cause and nature of radioactivity. Journal of the Chemical Society, Transactions, 81, 837–860.Google Scholar
  33. Selby, D., Creaser, R. A., Stein, H. J., Markey, R. J., Hannah, J. L., 2007. Assessment of the 187 Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta, 71(8), 1999–2013.Google Scholar
  34. Steiger, R. H., and Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.CrossRefGoogle Scholar
  35. Tavares, O. A. P., Terranova, M. L., and Medeiros, E. L., 2006. New evaluation of alpha decay half life of 190Pt isotope for the Pt-Os dating system. Nuclear Instruments and Methods in Physics Research B, 243, 256–260.CrossRefGoogle Scholar
  36. Vockenhuber, C., Oberli, F., Bichler, M., Ahmad, I., Quitte, G., Meier, M., Halliday, A. N., Lee, D. C., Kutschera, W., Steier, P., Gehrke, R. J., and Helmer, R. G., 2004. New half-life measurement of 182Hf: improved chronometer for the early solar system. Physical Review Letters, 93, 172501.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Geography and Earth SciencesMcMaster UniversityHamiltonCanada
  2. 2.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada