Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Electron Spin Resonance (ESR) Dating of Fossil Tooth Enamel

  • Mathieu DuvalEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_71


Electron paramagnetic resonance (EPR) dating of fossil tooth enamel


Electron spin resonance (ESR) dating: a chronometric dating method based on the evaluation of the exposure of some materials to natural radioactivity, which is quantified in terms of absorbed radiation dose and corresponds to the energy deposited in the matter by ionizing radiations.

DE: equivalent dose. The total absorbed radiation dose as measured in the laboratory.

ka: 1,000 years.

Ma: 1,000,000 years.


The first ESR dating applications to fossil bones were published in the early 1980s (e.g., Ikeya and Miki, 1980). Given the potential of this kind of material, studies were quickly reoriented toward fossil tooth enamel, which has more suitable characteristics for dating (Grün and Schwarcz, 1987). Then, the method progressively gained in accuracy over the following decades, especially via a better understanding of the ESR signal of fossil enamel and its behavior with the absorbed...

This is a preview of subscription content, log in to check access.


  1. Bischoff, J. L., and Rosenbauer, R. J., 1981. Uranium-series dating of human skeletal remains from the Del Mar and Sunnyvale sites, California. Science, 213, 1003–1005.CrossRefGoogle Scholar
  2. Blackwell, B., Porat, N., Schwarcz, H., and Debenath, A., 1992. ESR dating of tooth enamel – comparison with Th-230/U-234 speleothem dates at La-Chaise-de-Vouthon (Charente), France. Quaternary Science Reviews, 11, 231–244.CrossRefGoogle Scholar
  3. Brennan, B. J., Rink, W. J., Rule, E. M., Schwarcz, H. P., and Prestwich, W. V., 1999. The ROSY ESR dating program. Ancient TL, 17(2), 45–53.Google Scholar
  4. Brennan, B. J., Prestwich, W. V., Rink, W. J., Marsh, R. E., and Schwarcz, H. P., 2000. Alpha and beta dose gradients in tooth enamel. Radiation Measurements, 32(5–6), 759–765.CrossRefGoogle Scholar
  5. Brady, J. M., Aarestad, N. O., Swartz, H. M., 1968. In vivo dosimetry by electron spin resonance spectroscopy. Health Physics, 15(1), 43–47.CrossRefGoogle Scholar
  6. Brik, A. B., Rosenfeld, L. G., Haskell, E. H., Kenner, G. H., and Brik, V. B., 2000. Formation mechanism and localization places of CO2 radicals in tooth enamel. Mineral Journal (Ukraine), 22(5/6) 57–67.Google Scholar
  7. Callens, F., Vanhaelewyn, G., Matthys, P., and Boesman, E., 1998. EPR of carbonate derived radicals: applications in dosimetry, dating and detection of irradiated food. Applied Magnetic Resonance, 14(2–3), 235–254.CrossRefGoogle Scholar
  8. Dauphin, Y., and Williams, C. T., 2004. Diagenetic trends of dental tissues. Comptes Rendus Palevol, 3, 583–590.CrossRefGoogle Scholar
  9. Duval, M., Grün, R., Falguères, C., Bahain, J. J., and Dolo, J. M., 2009. ESR dating of Lower Pleistocene fossil teeth: limits of the single saturating exponential (SSE) function for the equivalent dose determination. Radiation Measurements, 44(5–6), 477–482.CrossRefGoogle Scholar
  10. Duval, M., Aubert, M., Hellstrom, J., and Grün, R., 2011. High resolution LA-ICP-MS mapping of U and Th isotopes in an early Pleistocene equid tooth from Fuente Nueva-3 (Orce, Andalusia, Spain). Quaternary Geochronology, 6(5), 458–467.CrossRefGoogle Scholar
  11. Duval, M., Falguères, C., and Bahain, J.-J., 2012. Age of the oldest hominin settlements in Spain: contribution of the combined U-series/ESR dating method applied to fossil teeth. Quaternary Geochronology, 10, 412–417.CrossRefGoogle Scholar
  12. Eggins, S., Grün, R., Pike, A. W. G., Shelley, M., and Taylor, L., 2003. 238U, 232Th profiling and U-series isotope analysis of fossil teeth by laser ablation-ICPMS. Quaternary Science Reviews, 22(10–13), 1373–1382.CrossRefGoogle Scholar
  13. Elliott, J., 2002. Calcium phospahte biominerals. In Kohn, M. J., Rakovan, J., and Hughes, J. M. (eds.), Phosphates – Geochemical, Geobiological and Material Importance. Washington, DC: Mineralogical Society of America, p. 427e454.Google Scholar
  14. Falguères, C., Bahain, J.-J., Pérez-González, A., Mercier, N., Santonja, M., and Dolo, J.-M., 2006. The Lower Acheulian site of Ambrona, Soria (Spain): ages derived from a combined ESR/U-series model. Journal of Archaeological Science, 33(2), 149–157.CrossRefGoogle Scholar
  15. Fattibene, P., and Callens, F., 2010. EPR dosimetry with tooth enamel: a review. Applied Radiation and Isotopes, 68(11), 2033–2116.CrossRefGoogle Scholar
  16. Grün, R., Schwarcz, H. P., and Chadam, J., 1988. ESR dating of tooth enamel: coupled correction for U-uptake and U-series desiquilibrium. Nuclear Tracks Radiation Measurements, 14, 237–244.CrossRefGoogle Scholar
  17. Grün, R., 1989. Electron spin resonance (ESR) dating. Quaternary International, 1, 65–109.CrossRefGoogle Scholar
  18. Grün, R., 1994. A cautionary note: use of ‘water content’ and ‘depth for cosmic ray dose rate’ in AGE and DATA programs. Ancient TL, 12(2), 50–51.Google Scholar
  19. Grün, R., 2000a. An alternative model for open system U-series/ESR age calculations: (closed system U-series)-ESR, CSUS-ESR. Ancient TL, 18(1), 1–4.Google Scholar
  20. Grün, R., 2000b. Methods of dose determination using ESR spectra of tooth enamel. Radiation Measurements, 32(5–6), 767–772.CrossRefGoogle Scholar
  21. Grün, R., 2007. LUMINESCENCE DATING | Electron Spin Resonance Dating. In Scott, A. E. Editor-in-Chief, Encyclopedia of Quaternary Science. Oxford: Elsevier, pp. 1505–1516.Google Scholar
  22. Grün, R., 2009a. The relevance of parametric U-uptake models in ESR age calculations. Radiation Measurements, 44(5–6), 472–476.CrossRefGoogle Scholar
  23. Grün, R., 2009b. The DATA program for the calculation of ESR age estimates on tooth enamel. Quaternary Geochronology, 4(3), 231–232.CrossRefGoogle Scholar
  24. Grün, R., and Katzenberger-Apel, O., 1994. An alpha irradiator for ESR dating. Ancient TL, 12(2), 35–38.Google Scholar
  25. Grün, R., and McDermott, F., 1994. Open system modelling for U-series and ESR dating of teeth. Quaternary Science Reviews, 13(2), 121–125.CrossRefGoogle Scholar
  26. Grün, R., and Schwarcz, H. P., 1987. Some remarks on ESR dating of bones. Ancient TL, 5(2), 1–9.Google Scholar
  27. Grün, R., Maroto, J., Eggins, S., Stringer, C., Robertson, S., Taylor, L., Mortimer, G., and McCulloch, M., 2006. ESR and U-series analyses of enamel and dentine fragments of the Banyoles mandible. Journal of Human Evolution, 50(3), 347–358.CrossRefGoogle Scholar
  28. Grün, R., Aubert, M., Hellstrom, J., and Duval, M., 2010. The challenge of direct dating old human fossils. Quaternary International, 223–224, 87–93.CrossRefGoogle Scholar
  29. Guérin, G., Mercier, N., Adamiec, G., 2011. Dose-rate conversion factors: update. Ancient TL, 29(1), 5–8.Google Scholar
  30. IAEA, 2002. Use of the electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. In IAEA-TECDOC-1331, International Atomic Energy Agency, Vienna, p. 57.Google Scholar
  31. Ikeya, M., 1982. A model of linear uranium accumulation for ESR age of Heidelberg (Mauer) and Tautavel bones. Japanese Journal of Applied Physics, 21, 690–692.CrossRefGoogle Scholar
  32. Ikeya, M., and Miki, T., 1980. Electron spin resonance dating of animal and human bones. Science, 207(4434), 977–979.CrossRefGoogle Scholar
  33. Joannes-Boyau, R., and Grün, R., 2011. A comprehensive model for CO2 radicals in fossil tooth enamel: implications for ESR dating. Quaternary Geochronology, 6(1), 82–97.CrossRefGoogle Scholar
  34. Kohn, M. J., Schoeninger, M. J., and Barker, W. W., 1999. Altered states: effects of diagenesis on fossil tooth chemistry. Geochimica and Cosmochimica Acta, 63, 2737–2747.CrossRefGoogle Scholar
  35. Olley, J. M., Murray, A., and Roberts, R. G., 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews, 15(7), 751–760.CrossRefGoogle Scholar
  36. Pike, A. W. G., and Hedges, R. E. M., 2001. Sample geometry and U uptake in archaeological teeth: implications for U-series and ESR dating. Quaternary Science Reviews, 20, 1021–1025.CrossRefGoogle Scholar
  37. Pike, A. W. G., and Hedges, R. E. M., 2001. Sample geometry and U uptake in archaeological teeth: implications for U-series and ESR dating. Quaternary Science Reviews, 20(5–9), 1021–1025.CrossRefGoogle Scholar
  38. Prescott, J. R., and Hutton, J. T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements, 23(2–3), 497–500.CrossRefGoogle Scholar
  39. Rink, W. J., 1997. Electron spin resonance (ESR) dating and ESR applications in quaternary science and archaeometry. Radiation Measurements, 27(5–6), 975–1025.CrossRefGoogle Scholar
  40. Schwarcz, H. P., 1985. ESR study of tooth enamel. Nuclear Tracks, 10, 865–867.Google Scholar
  41. Schwarcz, H. P., 1985. ESR studies of tooth enamel. Nuclear Tracks and Radiation Measurements (1982), 10(4–6), 865–867.CrossRefGoogle Scholar
  42. Schwarcz, H. P., Grün, R., and Tobias, P. V., 1994. ESR dating studies of the australopithecine site of Sterkfontein, South Africa. Journal of Human Evolution, 26(3), 175–181.CrossRefGoogle Scholar
  43. Shao, Q., Bahain, J.-J., Falguères, C., Dolo, J.-M., and Garcia, T., 2012. A new U-uptake model for combined ESR/U-series dating of tooth enamel. Quaternary Geochronology, 10, 406–411.CrossRefGoogle Scholar
  44. Toyoda, S., Kondo, A., Zumadilov, K., Hoshi, M., Miyazawa, C., and Ivannikov, A., 2011. ESR measurements of background doses in teeth of Japanese residents. Radiation Measurements, 46(9), 797–800.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.ESR dating laboratory, Geochronology programCentro Nacional de Investigación sobre la Evolución Humana (CENIEH)BurgosEspaña