Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Uranium–Lead Dating

  • Randall Parrish
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_193

Definition

Uraniumlead dating is the geological age-determination method that uses the radioactive decay of uranium (U) isotopes (238U, 235U, and also in this entry 232Th) into stable isotopes of lead (Pb) (206Pb, 207Pb, and 208Pb, respectively). U–Pb geochronology is the science of both the methodology but also the application of these methods to geological problems.

U–Pb decay system and age calculations

The accumulation of Pb in U-bearing minerals according to known decay rates of radioactive parent isotopes of U and Th forms the basis of this dating method. One measures the amount of radiogenic (i.e., produced from radioactive decay) Pb relative to the amount of radioactive parent isotope. As there are three radioactive isotopes ( 238U, 235U, and 232Th) that decay into stable “daughter” isotopes of Pb, one can calculate three ages in this manner, two of which have the same (i.e., U and Pb) elements forming parent and daughter. The decay systems, decay constants (λ), and half-lives...
This is a preview of subscription content, log in to check access.

Bibliography

  1. Amelin, Y., and Ireland, T. R., 2013. Dating the oldest rocks and minerals in the solar system. Elements, 9, 39–44.CrossRefGoogle Scholar
  2. Anczkiewicz, R., Oberli, F., Burg, J. P., Villa, I. M., Meier, M., and Gunther, D., 2001. Timing of normal faulting along the Indus suture in Pakistan Himalaya and a case of major 231Pa/235U initial disequilibrium in zircon. Earth and Planetary Science Letters, 191, 101–114.CrossRefGoogle Scholar
  3. Boltwood, B. B., 1907. On the ultimate disintegration products of the radioactive elements, part II: the disintegration products of uranium. American Journal of Science, 23, 77–88.Google Scholar
  4. Bracciali, L., Parrish, R. R., Horstwood, M. S. A., Condon, D. J., and Najman, Y., 2013. U–Pb LA-(MC)-ICP-MS dating of rutile: new reference materials and applications to sedimentary provenance. Chemical Geology, 347, 82–101.CrossRefGoogle Scholar
  5. Compston, W., Williams, I. S., and Meyer, C., 1984. U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high resolution ion microprobe, proceedings of the 14th lunar and planetary science conference, part 2. Journal of Geophysical Research, 89, B525–B534.CrossRefGoogle Scholar
  6. Copeland, P., Parrish, R. R., and Harrison, T. M., 1988. Identification of inherited radiogenic Pb in monazite and its implications for U–Pb systematics. Nature, 333, 760–763.CrossRefGoogle Scholar
  7. Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P., 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53, 469–500.CrossRefGoogle Scholar
  8. Cottle, J. M., Searle, M. P., Horstwood, M. S. A., and Waters, D. J., 2009. Timing of mid-crustal metamorphism, melting and deformation in the Mt. Everest region of southern Tibet revealed by U(−Th)–Pb geochronology. Journal of Geology, 117, 643–666.CrossRefGoogle Scholar
  9. Davis, D. W., Amelin, Y., Nowell, G. M., and Parrish, R. R., 2005. Hf isotopes in zircon from the western superior province, Canada: implications for Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Research, 140(3–4), 132–156.CrossRefGoogle Scholar
  10. Gulson, B., and Krogh, T., 1973. Old lead component in the young Bergell Massif, Southeast Swiss Alps. Contributions to Mineralogy and Petrology, 40, 239–252.CrossRefGoogle Scholar
  11. Heaman, L. M., and LeCheminant, A. N., 1993. Paragenesis and U–Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110, 95–126.CrossRefGoogle Scholar
  12. Heaman, L., and Parrish, R. R., 1991. U–Pb geochronology of accessory minerals. In Applications of Radiogenic Isotope Systems to Problems in Geology. Short course handbook, J Ludden and L Heaman, eds., Mineralogical Association of Canada, Vol. 19, pp. 59–102.Google Scholar
  13. Hiess, J., Condon, D. J., McLean, N., and Noble, S. R., 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science, 335(6076), 1610–1614.CrossRefGoogle Scholar
  14. Hoffman, P., 1988. United plates of America, the birth of a craton: early proterozoic assembly and growth of laurentia. Annual Review of Earth and Planetary Sciences, 16, 543–603.CrossRefGoogle Scholar
  15. Holmes, A., 1911. The association of lead with uranium in rock minerals and its application to measurement of geological time. Proceedings of the Royal Society of London, 85, 248–256.CrossRefGoogle Scholar
  16. Horstwood, M. S. A., Parrish, R. R., Nowell, G. M., and Noble, S. R., 2003. Accessory mineral U–Th–Pb geochronology by laser-ablation plasma-ionisation multi-collector mass spectrometry (LA-PIMMS). Journal of Analytical Atomic Spectrometry, 2003(18), 837–846.CrossRefGoogle Scholar
  17. Krogh, T. E., 1973. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta, 37, 485–494.CrossRefGoogle Scholar
  18. Krogh, T. E., 1982. Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta, 46, 637–649.CrossRefGoogle Scholar
  19. Ludwig, K., 1991. ISOPLOT – A Plotting and Regression Program for Radiogenic Isotope Data. Denver: US Geological Survey. US geological survey open file report, 91–445.Google Scholar
  20. Mattinson, J. M., 1973. Anomalous isotopic composition of lead in young zircons. Carnegie Institution of Washington Yearbook, 72, 613–616.Google Scholar
  21. Mattinson, J., 2005. Zircon U–Pb chemical abrasion (CA-TIMS) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66.CrossRefGoogle Scholar
  22. Montel, J.-M., Foret, S., le Veschambre, M., Nicollet, C., and Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology, 131, 37–53.CrossRefGoogle Scholar
  23. Najman, Y., Bickle, M., Carter, A., Garzanti, F., Wilbrans, J., Willett, S., Oliver, G., Parrish, R. R., Akhter, S. H., Allen, R., Ando, S., Chisty, E., Reisberg, L., and Vessoli, G., 2008. The Palaeogene record of Himalayan erosion. Earth and Planetary Science Letters, 273, 1–14.CrossRefGoogle Scholar
  24. Nemchin, A., Timms, N., Pidgeon, R., Geisler, T., Reddy, S., and Meyer, C., 2009. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature Geoscience, 2, 133–138.CrossRefGoogle Scholar
  25. Nier, A. O. C., 1939. The isotopic composition of uranium and the half-lives of the uranium isotopes I. Physics Review, 55, 150.CrossRefGoogle Scholar
  26. Nier, A. O. C., Thompson, R. W., and Murphy, B. F., 1941. The isotopic composition of lead and the measurement of geological time. Physics Review, 60, 112.CrossRefGoogle Scholar
  27. Oberli, F., Meier, M., Berger, A., Rosenberg, C. L., and Gieré, R., 2004. U–Th–Pb and 230Th/238U disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochimica et Cosmochimica Acta, 68, 2543–2560.CrossRefGoogle Scholar
  28. Parrish, R. R., 1990. U–Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27, 1431–1450.CrossRefGoogle Scholar
  29. Parrish, R. R., 2001. The response of mineral chronometers to metamorphism and deformation in orogenic belts. In Miller, J. A., Holdsworth, R. E., Buick, I. S., and Hand, M. (eds.), Continental Recactivation and Reworking. London: Geological Society. Special publications, Vol. 184, pp. 289–301.Google Scholar
  30. Parrish, R. R., and Krogh, T. E., 1987. Synthesis and purification of 205Pb for U–Pb for geochronology. Chemical Geology (Isotope Geoscience Section), 66, 103–110.CrossRefGoogle Scholar
  31. Patterson, C., 1956. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230–237.CrossRefGoogle Scholar
  32. Rasbury, E. T., Hanson, G. N., Meyers, W. J., and Saller, A. H., 1997. Dating the time of sedimentation using U–Pb ages for paleosol calcite. Geochimica et Cosmochimica Acta, 61, 1525–1529.CrossRefGoogle Scholar
  33. Richards, D. A., Bottrell, S. H., Cliff, R. A., Ströhle, K., and Rowe, P. J., 1998. U–Pb dating of a speleothem of quaternary age. Geochimica et Cosmochimica Acta, 62, 3683–3688.CrossRefGoogle Scholar
  34. Roddick, J. C., Loveridge, W. D., and Parrish, R. R., 1987. Precise U/Pb dating of zircon of the sub-nanogram Pb Level. Chemical Geology (Isotope Geoscience Section), 66, 111–121.CrossRefGoogle Scholar
  35. Schärer, U., 1984. The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth and Planetary Science Letters, 67, 191–204.CrossRefGoogle Scholar
  36. Smith, H. A., and Barreiro, B., 1990. Monazite U–Pb dating of staurolite grade metamorphism in pelitic schists. Contributions to Mineralogy and Petrology, 105, 602–615.CrossRefGoogle Scholar
  37. Smith, P. E., and Farquhar, R. M., 1989. Direct dating of Phanerozoic sediments by the 238U–206Pb method. Nature, 341, 518–521.CrossRefGoogle Scholar
  38. Soddy, F., 1913. Intra-atomic charge. Nature, 92, 399–400.CrossRefGoogle Scholar
  39. Suzuki, K., Adachi, M., and Kajizuka, I., 1994. Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth and Planetary Science Letters, 128, 391–405.CrossRefGoogle Scholar
  40. Tera, F., and Wasserburg, G., 1972. U–Th–Pb systematics in lunar highland samples from the Luna 16 and Apollo 16 missions. Earth and Planetary Science Letters, 17, 36–51.CrossRefGoogle Scholar
  41. Tilton, G. R., Patterson, C., Brown, H., Inghram, M., Hayden, R., Hess, D., and Larsen, E., 1955. Isotopic composition and distribution of lead, uranium, and thorium in a Precambrian granite. Geological Society of America Bulletin, 66, 1131–1148.CrossRefGoogle Scholar
  42. Wetherill, G., 1956. Discordant uranium-lead ages, I, transactions. American Geophysical Union, 37, 320–326.CrossRefGoogle Scholar
  43. Williams, M. L., and Jercinovic, M. J., 2002. Microprobe monazite geochronology: putting absolute time into microstructural analysis. Journal of Structural Geology, 24, 1013–1028.CrossRefGoogle Scholar
  44. Woodhead, J., Hellstrom, J., Pickering, R., Drysdale, R., Paul, B., and Bajo, P., 2012. U and Pb variability in older speleothems and strategies for their chronology. Quaternary Geochronology, 14, 105–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of GeologyUniversity of Leicester and NERC Isotope Geosciences Laboratory, British Geological Survey KeyworthNottsUK