Encyclopedia of Scientific Dating Methods

2015 Edition
| Editors: W. Jack Rink, Jeroen W. Thompson

Luminescence, Flints and Stones

  • Daniel RichterEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-94-007-6304-3_14

Introduction

Most applications of luminescence dating of flints and stones are related to archaeology and the timing of prehistoric sites. Here, prehistoric human activities are directly dated in most cases, using the last heating of flint, chert, limestone, quartzite, or quartz. This is in contrast to surface exposure dating of such materials, where the event dated – the last exposure or burial – is often not related to the event of the human occupation or activities. Consideration of the relation between the event dated and the research question asked (i.e., sedimentology, human activity, etc.) is crucial. This is well discussed in Dean (1978), who describes a “typology of events.” Luminescence dating is especially useful in archaeological context at the limits or beyond the range of radiocarbon dating of organic material or when the latter is lacking (see “ Luminescence Dating”). The time span of application ranges from a few to several hundred ka. However, recent developments...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Aitken, M. J., 1985. Thermoluminescence Dating. London: Academic Press.Google Scholar
  2. Alperson-Afil, N., Richter, D., and Goren-Inbar, N., 2007. Phantom hearths and the use of fire at Gesher Benot Ya‘aqov, Israel. PaleoAnthropology, 1, 1–15.Google Scholar
  3. Armitage, S. J., and King, G. E., 2013. Optically stimulated luminescence dating of hearths from the Fazzan Basin, Libya: a tool for determining the timing and pattern of Holocene occupation of the Sahara. Quaternary Geochronology, 15, 88–97.CrossRefGoogle Scholar
  4. Chapot, M. S., Sohbati, R., Murray, A. S., Pederson, J. L., and Rittenour, T. M., 2012. Constraining the age of rock art by dating a rockfall event using sediment and rock-surface luminescence dating techniques. Quaternary Geochronology, 13, 18–25.CrossRefGoogle Scholar
  5. Dean, J. S., 1978. Independent dating in archaeological analysis. In Schiffer, M. B. (ed.), Advances in Archaeological Method and Theory. New York: Academic Press, Vol. 1, pp. 223–255.Google Scholar
  6. Debenham, N. C., 1994. A guide to TL dating flint assemblages. In Ashton, N., and David, A. (eds.), Stories in Stone. London: Lithic Studies Society. Lithic Studies Society Occasional Paper, Vol. 4, pp. 4–6.Google Scholar
  7. Greilich, S., and Wagner, G. A., 2009. Light thrown on history – the dating of stone surfaces at the geoglyphs of Palpa using optically stimulated luminescence. In Reindel, M., and Wagner, G. A. (eds.), New Technologies for Archaeology. Multidisciplinary Investigations in Palpa and Nasca, Peru. Natural Science in Archaeology. Berlin: Springer, pp. 271–286.Google Scholar
  8. Guérin, G., 2012. Numerical simulations and modeling of dosimetric effects in Quaternary sediments: application to luminescence dating methods. Ancient TL, 30(1), 30.Google Scholar
  9. Guérin, G., and Mercier, N., 2012. Field gamma spectrometry, Monte Carlo simulations and potential of non-invasive measurements. Geochronometria, 39(1), 40–47.CrossRefGoogle Scholar
  10. Guibert, P., Bechtel, F., Schvoerer, M., Müller, P., and Balescu, S., 1998. A new method for gamma dose-rate estimation of heterogeneous media in TL dating. Radiation Measurements, 29(5), 561–572.CrossRefGoogle Scholar
  11. Higham, T., Basell, L., Jacobi, R., Wood, R., Ramsey, C. B., and Conard, N. J., 2012. Τesting models for the beginnings of the Aurignacian and the advent of figurative art and music: the radiocarbon chronology of Geißenklösterle. Journal of Human Evolution, 62(6), 664–676.CrossRefGoogle Scholar
  12. Kouremenos, P., 2008. Testing the Use of OSL on Cobbles from the Raised Beaches of King George Island, Antarctica. M.S., Ann Arbor: Oklahoma State UniversityGoogle Scholar
  13. Mercier, N., Valladas, H., Bar-Yosef, O., Vandermeersch, B., Stringer, C. B., and Joron, J. L., 1993. Thermoluminescence date for the mousterian burial site of Es-Skhul, Mt. Carmel. Journal of Archaeological Science, 20(2), 169–174.CrossRefGoogle Scholar
  14. Mercier, N., Froget, L., Miallier, D., Pilleyre, T., Sanzelle, S., and Tribolo, C., 2004. Nouvelles données chronologiques pour le site de Menez-Dregan 1 (Bretagne); l’apport de la thermoluminescence. New chronological data for the Menez-Dregan I site in Brittany; thermoluminescence data. Quaternaire, 15(3), 253–261.CrossRefGoogle Scholar
  15. Polymeris, G. S., Gogou, D., Afouxenidis, D., Rapti, S., Tsirliganis, N. C., and Kitis, G., 2010. Preliminary TL and OSL Investigation of a naturally and artificially irradiated obsidian. Mediterranean Archaeology and Archaeometry, 10(4), 83–91.Google Scholar
  16. Poolton, N. R. J., Bøtter-Jensen, L., and Rink, W. J., 1995. An optically stimulated luminescence study of flint related to radiation dosimetry. Radiation Measurements, 24(4), 551–555.CrossRefGoogle Scholar
  17. Richter, D., 2007. Advantages and limitations of thermoluminescence dating of heated flint from Paleolithic sites. Geoarchaeology, 22(6), 671–683.CrossRefGoogle Scholar
  18. Richter, D., 2011. Dating small heated flint artifacts: a new thermoluminescence technique. In Conard, N. J., and Richter, J. (eds.), Neanderthal Lifeways, Subsistence and Technology. Dordrecht: Springer. Vertebrate Paleobiology and Paleoanthropology, Vol. 19, pp. 53–57.CrossRefGoogle Scholar
  19. Richter, D., and Krbetschek, M., 2006. A new thermoluminescence dating technique for heated flint. Archaeometry, 48(4), 695–705.CrossRefGoogle Scholar
  20. Richter, D., and Krbetschek, M., 2014a. Luminescence dating of the Lower Palaeolithic occupation at Schöningen. Journal of Human Evolution (in press)Google Scholar
  21. Richter, D., and Krbetschek, M., 2014b. Preliminary luminescence dating results for two middle Palaeolithic occupations at Neumark-Nord 2. In Gaudzinski-Windheuser, S., and Roebroeks, W. (eds.), Multidisciplinary Studies of the Middle Palaeolithic record from Neumark-Nord (Germany). volume 1. Veröffentlichungen des Landesamtes für Denkmalpflege und Archäologie Sachsen-Anhalt. Halle: Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Vol. 68 (in press).Google Scholar
  22. Richter, D., and Temming, H., 2006. Testing heated flint palaeodose protocols using dose recovery procedures. Radiation Measurements, 41(7–8), 819–825.CrossRefGoogle Scholar
  23. Richter, D., Waiblinger, J., Rink, W. J., and Wagner, G. A., 2000. Thermoluminescence, electron spin resonance, and 14C-dating of the Late Middle and Early Upper Palaeolithic site Geißenklösterle Cave in Southern Germany. Journal of Archaeological Science, 27(1), 71–89.CrossRefGoogle Scholar
  24. Richter, D., Hublin, J.-J., Jaubert, J., McPherron, S. P., Soressi, M., and Texier, J.-P., 2013. Thermoluminescence dates for the Middle Palaeolithic site of Chez-Pinaud Jonzac (France). Journal of Archaeological Science, 40, 1176–1185.CrossRefGoogle Scholar
  25. Richter, D., Angelucci, D. E., Burbidge, C. I., Dias, M. I., Gouveia, M. A., Prudencio, M. I., and Zilhão, J., 2014. Heated flint from Gruta da Oliveira (Portugal): dosimetric challenges and comparison of TL-dating results with radiocarbon and U-series dating. Journal of Archaeological Science, 41, 705–715.CrossRefGoogle Scholar
  26. Roque, C., Guibert, P., Vartanian, E., Bechtel, F., and Schvoerer, M., 2001. Thermoluminescence-dating of calcite: study of heated limestone fragments from Upper Paleolithic Layers at Combe Sauniere, Dordogne, France. Quaternary Science Reviews, 20(5–9), 935–938.CrossRefGoogle Scholar
  27. Schmidt, C., and Kreutzer, S., 2013. Optically stimulated luminescence of amorphous/microcrystalline SiO2 (silex): basic investigations and potential in archeological dosimetry. Quaternary Geochronology, 15, 1–10.CrossRefGoogle Scholar
  28. Schmidt, C., Rufer, D., Preusser, F., Krbetschek, M., and Hilgers, A., 2013. The assessment of radionuclide distribution in silex by autoradiography in the context of dose rate determination for thermoluminescence dating. Archaeometry, 55(3), 407–422.CrossRefGoogle Scholar
  29. Sier, M. J., Roebroeks, W., Bakels, C. C., Dekkers, M. J., Brühl, E., De Loecker, D., Gaudzinski-Windheuser, S., Hesse, N., Jagich, A., Kindler, L., Kuijper, W. J., Laurat, T., Mücher, H. J., Penkman, K. E. H., Richter, D., and van Hinsbergen, D. J. J., 2011. Direct terrestrial-marine correlation demonstrates surprisingly late onset of the last interglacial in central Europe. Quaternary Research, 75(1), 213–218.CrossRefGoogle Scholar
  30. Sohbati, R., Murray, A. S., Buylaert, J.-P., Almeida, N. A. C., and Cunha, P. P., 2012. Optically stimulated luminescence (OSL) dating of quartzite cobbles from the Tapada do Montinho archaeological site (east-central Portugal). Boreas, 41(3), 452–462.CrossRefGoogle Scholar
  31. Tribolo, C., Mercier, N., Selo, M., Valladas, H., Joron, J. L., Reyss, J. L., Henshilwood, C., Sealy, J., and Yates, R., 2006. TL dating of burnt lithics from Blombos Cave (South Africa): further evidence for the antiquity of modern human behaviour. Archaeometry, 48(2), 341–357.CrossRefGoogle Scholar
  32. Valladas, H., Joron, J. L., Valladas, G., Arensburg, B., Bar-Yosef, O., Belfer-Cohen, A., Goldberg, P., Laville, H., Meignen, L., Rak, Y., Tchernov, E., Tillier, A. M., and Vandermeersch, B., 1987. Thermoluminescence dates for the neanderthal burial site at Kebara in Israel. Nature, 330, 159–160.CrossRefGoogle Scholar
  33. Valladas, H., Reyss, J. L., Joron, J. L., Valladas, G., Bar-Yosef, O., and Vandermeersch, B., 1988. Thermoluminescence dating of mousterian “Proto-Cro-Magnon” remains from Israel and the origin of modern man. Nature, 331, 614–616.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  2. 2.GeomorphologieUniversity of BayreuthBayreuthGermany