Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Synthesis of Subnanometric Metal Nanoparticles

  • Javier Calvo Fuentes
  • José Rivas
  • M. Arturo López-Quintela
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_55-2

Synonyms

Definition

Metal atomic clusters consist of groups of atoms with well-defined compositions and one or very few stable geometric structures. They represent the most elemental building blocks in nature – after atoms – and are characterized by their size, comparable to the Fermi wavelength of an electron, which makes them a bridge between atoms and nanoparticles or bulk metals, with properties very different from both of them.

Introduction

Typical metal nanoparticles with dimensions from two to several tens of nanometers show smoothly size-dependent properties. However, when particle size becomes comparable to the Fermi wavelength of an electron (∼0.52 nm for gold and silver), properties of metal clusters are dramatically different from what should be expected if they were due only to their high surface-to-volume ratio. In these subnanometric species, quantum effects are responsible for totally new chemical,...

Keywords

Metal Cluster Magic Number Gold Cluster Fetal Alcohol Syndrome Stable Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Chou, M.Y., Cleland, A., Cohen, M.L.: Total energies, abundances, and electronic shell structure of lithium, sodium, and potassium clusters. Solid State Commun. 52, 645–648 (1984)CrossRefGoogle Scholar
  2. 2.
    de Heer, W.A.: The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1993)CrossRefGoogle Scholar
  3. 3.
    Walter, M., Akola, J., Lopez-Acevedo, O., Jadzinsky, P.D., Calero, G., Ackerson, C.J., Whetten, R.L., Grönbeck, H., Häkkinen, H.: A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. 105, 9157–9162 (2008)CrossRefGoogle Scholar
  4. 4.
    Zheng, J., Zhang, C., Dickson, R.M.: Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 93, 077402 (2004)CrossRefGoogle Scholar
  5. 5.
    Zheng, J., Nikovich, P.R., Dickson, R.M.: Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem. 58, 409–431 (2007)CrossRefGoogle Scholar
  6. 6.
    Vilar-Vidal, N., Blanco, M.C., López-Quintela, M.A., Rivas, J., Serra, C.: Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 114, 15924–15930 (2010)CrossRefGoogle Scholar
  7. 7.
    Lin, C.-A.J., Yang, T.-Y., Lee, C.-H., Huang, S.H., Sperling, R.A., Zanella, M., Li, J.K., Shen, J.-L., Wang, H.-H., Yeh, H.-I., Parak, W.J., Chang, W.H.: Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 3, 395–401 (2009)CrossRefGoogle Scholar
  8. 8.
    Biang, P., Zhou, P., Liu, Y., Ma, Z.: One-Step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging. Nanoscale 5, 6161–6166 (2013)CrossRefGoogle Scholar
  9. 9.
    Kong, Y., Chen, J., Gao, F., Brydson, R., Johnson, B., Heth, G., Zhang, Y., Wu, L., Zhou, D.: Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters. Nanoscale 5, 1009–10017 (2013)CrossRefGoogle Scholar
  10. 10.
    Heiz, U., Landman, U.: Nanocatalysis (Nanoscience and Technology). Springer, Berlin (2007)CrossRefGoogle Scholar
  11. 11.
    Vajda, S., Pellin, M.J., Greeley, J.P., Marshall, C.L., Curtiss, L.A., Ballentine, G.A., Elam, J.W., Catillon-Mucherie, S., Redfern, P.C., Mehmood, F., Zapol, P.: Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009)CrossRefGoogle Scholar
  12. 12.
    Lee, S., Molina, L.M., López, M.J., Alonso, J.A., Hammer, B., Lee, B., Seifert, S., Winans, R.E., Elam, J.W., Pellin, M.J., Vajda, S.: Selective propene epoxidation on immobilized Au6-10clusters: the effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 48, 1467–1471 (2009)CrossRefGoogle Scholar
  13. 13.
    Harding, C., Habibpour, V., Kunz, S., Farnbacher, A.N.-S., Heiz, U., Yoon, B., Landman, U.: Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition. J. Am. Chem. Soc. 131, 538–548 (2009)CrossRefGoogle Scholar
  14. 14.
    Rodríguez-Vázquez, M.J., Blanco, M.C., Lourido, R., Vázquez-Vázquez, C., Pastor, E., Planes, G.A., Rivas, J., López-Quintela, M.A.: Synthesis of atomic gold clusters with strong electrocatalytic activities. Langmuir 24, 12690–12694 (2008)CrossRefGoogle Scholar
  15. 15.
    Selva, J., Martínez, S.E., Buceta, D., Rodríguez-Vázquez, M.J., Blanco, M.C., López-Quintela, M.A., Egea, G.: Silver sub-nanoclusters electrocatalyze ethanol oxidation and provide protection against ethanol toxicity in cultured mammalian cells. J. Am. Chem. Soc. 132, 6947–6954 (2010)CrossRefGoogle Scholar
  16. 16.
    Corma, A., Concepción, P., Boronat, M., Sabater, M.J., Navas, J., Yacamán, M.J., Larios, E., Posadas, A., López-Quintela, M.A., Buceta, D., Mendoza, E., Guilera, G., Mayoral, A.: Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013)CrossRefGoogle Scholar
  17. 17.
    Schaeffer, N., Tan, B., Dickinson, C., Rosseinsky, M.J., Laromaine, A., McComb, D.W., Stevens, M.M., Wang, Y., Petit, L., Barentin, C., Spiller, D.G., Cooper, A.I., Lévy, R.: Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1–1.7 nm size range. Chem. Commun. 34, 3986–3988 (2008)CrossRefGoogle Scholar
  18. 18.
    Negishi, Y., Nobusada, K., Tsukuda, T.: Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127, 5261–5270 (2005)CrossRefGoogle Scholar
  19. 19.
    Royon, A., Bourhis, K., Bellec, M., Papon, G., Bousquet, B., Deshayes, Y., Cardinal, T., Canioni, L.: Silver clusters embedded in glass as a perennial high capacity optical recording medium. Adv. Mater. 22, 5282–5286 (2010)CrossRefGoogle Scholar
  20. 20.
    López-Quintela, M.A.: Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 8, 137–144 (2003)CrossRefGoogle Scholar
  21. 21.
    Ledo-Suárez, A., Rivas, J., Rodríguez-Abreu, C.F., Rodríguez, M.J., Pastor, E., Hernández-Creus, A., Oseroff, S.B., López-Quintela, M.A.: Facile synthesis of stable subnanosized silver clusters in microemulsions. Angew. Chem. Int. Ed. 46, 8823–8827 (2007)CrossRefGoogle Scholar
  22. 22.
    Vázquez-Vázquez, C., Bañobre-López, M., Mitra, A., López-Quintela, M.A., Rivas, J.: Synthesis of small atomic copper clusters in microemulsions. Langmuir 25, 8208–8216 (2009)CrossRefGoogle Scholar
  23. 23.
    Santiago González, B., Rodríguez, M.J., Blanco, C., Rivas, J., López-Quintela, M.A., Martinho, J.M.G.: One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett. 10, 4217–4221 (2010)CrossRefGoogle Scholar
  24. 24.
    Yu, Y., Chen, X., Yao, Q., Yu, Y., Yan, N., Xie, J.: Scalable and Precise Synthesis of Thiolated Au10-12, Au15, Au18, and Au25 Nanoclosters via pH controlled CO Reduction. Chem. Mater. 25, 946–952 (2013)Google Scholar
  25. 25.
    Stamplecoskie, K.G., Kamat, P.V.: Size-dependent excited state behavior of glutathione –capped gold clusters and their light-harvesting capacity. J. Am. Chem. Soc. 136, 11093–11109 (2014)CrossRefGoogle Scholar
  26. 26.
    Piñeiro Redondo, Y., Buceta, D., Huseyinova, S., Cuerva, M., Perez Mariño, A., Dominguez, B., Calvo, J., López-Quintela, M. A.:Large stability and high catalytic activites of sub-nm metal (0) clusters: implications into the nucleation and growth theory. J. Colloid Interface Sci. 449, 279–285 (2015)Google Scholar
  27. 27.
    Habeeb Muhammed, M.A., Ramesh, S., Sinha, S.S., Pal, S.K., Pradeep, T.: Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Res. 1, 333–340 (2008)CrossRefGoogle Scholar
  28. 28.
    Duan, H., Nie, S.: Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water soluble atomic clusters. J. Am. Chem. Soc. 129, 2412–2413 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Javier Calvo Fuentes
    • 1
  • José Rivas
    • 2
  • M. Arturo López-Quintela
    • 2
  1. 1.Nanogap Sub-Nm-Powder S.A.Milladoiro – Ames (A Coruña)Spain
  2. 2.Laboratory of Magnetism and Nanotechnology, Institute for Technological ResearchUniversity of Santiago de CompostelaSantiago de CompostelaSpain