Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Physical Vapor Deposition

  • Yoke Khin YapEmail author
  • Dongyan Zhang
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-94-007-6178-0_362-3



Physical vapor deposition (PVD) is referred to deposition processes of thin films and nanostructures through the evaporation of solid precursors into their vapor phase by physical approaches followed by the condensation of the vapor phase on substrates. The whole process consists of three stages: (1) evaporation of the solid source, (2) vapor phase transport from the source to the substrates, and (3) vapor condensation on the...


Molecular Beam Epitaxy Boron Nitride Pulse Laser Deposition Physical Vapor Deposition Thin Film Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



Yoke Khin Yap acknowledges the support from the National Science Foundation (Award number DMR-1261910).


  1. 1.
    Mattox, D.M.: Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control (Hardcover). Noyes, Westwood, N.J (1998)Google Scholar
  2. 2.
    Mahan, J.E.: Physical Vapor Deposition of Thin Films. Wiley-Interscience, New York (2000)Google Scholar
  3. 3.
    Park, J., et al.: Epitaxial graphene growth by carbon molecular beam epitaxial (CMBE). Adv. Mater. 22, 4140–4145 (2010)CrossRefGoogle Scholar
  4. 4.
    Hackley, J., et al.: Graphitic carbon growth on Si (111) using solid source molecular beam epitaxy. Appl. Phys. Lett. 95, 133114 (2009)CrossRefGoogle Scholar
  5. 5.
    Tsang, W.T., et al.: Chemical beam epitaxy of InP and GaAs. Appl. Phys. Lett. 45, 1234–1236 (1984)CrossRefGoogle Scholar
  6. 6.
    Schiller, S., Jäsch, G.: Deposition by electron beam evaporation with rates of up to 50 μm s−1. Thin Solid Films 54, 9–21 (1978)CrossRefGoogle Scholar
  7. 7.
    Chrisey, D.B., Hubler, G.H. (eds.): Pulsed Laser Deposition of Thin Films. Wiley-Interscience, New York (1994)Google Scholar
  8. 8.
    Wang, J., Yap, Y.K.: Growth of adhesive cubic phase boron nitride films without argon ion bombardment. Diamond Relat. Mater. 15, 444–447 (2006)CrossRefGoogle Scholar
  9. 9.
    Yap, Y.K., Kida, S., Aoyama, T., Mori, Y., Sasaki, T.: Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 °C. Appl. Phys. Lett. 73, 915 (1998)CrossRefGoogle Scholar
  10. 10.
    Yap, Y.K., Aoyama, T., Kida, S., Mori, Y., Sasaki, T.: Synthesis of adhesive c-BN films in pure nitrogen radio-frequency plasma. Diamond Relat. Mater. 8, 382–385 (1999)CrossRefGoogle Scholar
  11. 11.
    Yamamoto, K., Koga, Y., Fujiwara, S., Kokai, F., Heimann, B.: Dependence of the sp 3 bond fraction on the laser wavelength in thin carbon films prepared by pulsed laser deposition. Appl. Phys. A 66, 115–117 (1998)CrossRefGoogle Scholar
  12. 12.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  13. 13.
    Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)CrossRefGoogle Scholar
  14. 14.
    Wang, J., et al.: Low temperature growth of boron nitride nanotubes on substrates. Nano Lett. 5, 2528–2532 (2005)CrossRefGoogle Scholar
  15. 15.
    Yap, Y.K., Yoshimura, M., Mori, Y., Sasaki, T., Hanada, T.: Formation of aligned-carbon nanotubes by RF-plasma-assisted pulsed-laser deposition. Special issue for Tsukuba symposium on carbon nanotubes in commemoration of the 10th anniversary of its discovery; S. Ijima et al. eds. Phys. B. 323, 341–343 (2002)Google Scholar
  16. 16.
    Lee, K.-F., et al.: Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering. J. Vac. Sci. Technol. B 21, 1437–1441 (2003)CrossRefGoogle Scholar
  17. 17.
    Xie, M., Wang, J., Yap, Y.K.: Mechanism for low temperature growth of boron nitride nanotubes. J. Phys. Chem. C 114, 16236–16241 (2010)CrossRefGoogle Scholar
  18. 18.
    Heo, Y.W., Kaufman, M., Pruessner, K., Norton, D.P., Ren, F., Chisholm, M.F., Fleming, P.H.: Optical properties of Zn1−x Mg x O nanorods using catalysis-driven molecular beam epitaxy. Solid-State Electron. 47, 2269–2273 (2003); Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F., Fleming, P.H.: Site-specific growth of Zno nanorods using catalysis-driven molecular beam epitaxy. Appl. Phys. Lett. 81, 3046–3048 (2002)Google Scholar
  19. 19.
    Rahm, A., et al.: Pulsed-laser deposition and characterization of ZnO nanowires with regular lateral arrangement. Appl. Phys. A 88, 31–34 (2007)CrossRefGoogle Scholar
  20. 20.
    Nagashima, K., Yanagida, T., Tanaka, H., Kawai, T.: Epitaxial growth of MgO nanowires by pulsed laser deposition. J. Appl. Phys. 101, 124304 (2007)CrossRefGoogle Scholar
  21. 21.
    Lee, C.H., et al.: Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots. Adv. Mater. 25, 4544–4548 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsMichigan Technological UniversityHoughtonUSA