Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Harnessing Disorder at the Nanoscale

  • Juan Sebastian Totero Gongora
  • Andrea Fratalocchi
Living reference work entry

Later version available View entry history

DOI: https://doi.org/10.1007/978-94-007-6178-0_101015-1

Synonyms

Definition

In nanotechnology, any fabrication process naturally introduces disorder and randomness at the nanoscale. Disorder is typically unwanted in applications, as it is associated with unpredictable degrees of freedom that are difficult to control. However, it can be demonstrated that disorder supports fascinating and counterintuitive phenomena, which can be harnessed at the nanoscale for the realization of specific functionalities.

Introduction

It is a common perception that the presence of disorder influences negatively the properties of a physical system. Nevertheless, there are several cases in which disorder plays a positive role and can be exploited to develop novel applications. In general, the introduction of disorder significantly increases the complexity of the system under examination, but, as is often seen in nature, an...

Keywords

Transfer Matrix Open Cavity Surface Plasmon Polaritons Localization Length Random Matrix Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Fratalocchi, A., Conti, C., Ruocco, G.: Three-dimensional ab-initio investigation of light-matter interaction in mie lasers, Phys. Rev. A 78, 013806 (2008). doi:10.1103/Phys-reva.78.013806CrossRefGoogle Scholar
  2. 2.
    Liu, C., Di Falco, A., Molinari, D., Khan, Y., Ooi, B.S., Krauss, T.F., Fratalocchi, A.: Enhanced energy storage in chaotic optical resonators, Nat. Photonics 7, 474 (2013)Google Scholar
  3. 3.
    Liu, C., Di Falco, A., Fratalocchi, A.: Dicke phase transition with multiple superradiant states in quantum chaotic resonators, Phys. Rev. X 4, 021048 (2014)Google Scholar
  4. 4.
    Anderson, P.W.: Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958)CrossRefGoogle Scholar
  5. 5.
    Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R.: Localization of light in a disordered medium, Nature 390, 671 (1997)CrossRefGoogle Scholar
  6. 6.
    Conti, C., Fratalocchi, A.: Dynamic light diffusion, three-dimensional anderson localization and lasing in inverted opals, Nat. Phys. 4, 794 (2008)CrossRefGoogle Scholar
  7. 7.
    Shalaev, V.M.: Nonlinear Optics of Random Media – Fractal Composites and Metal-Dielectric Films. Springer Tracts in Modern Physics, vol. 158. Springer, Berlin (2000)Google Scholar
  8. 8.
    Shahbazyan, T.V., Stockman, M.I.: Plasmonics: Theory and Applications. Springer, Dordrecht (2014)Google Scholar
  9. 9.
    Haake, F.: Quantum Signatures of Chaos. Springer Series in Synergetics, vol. 54, 3rd edn. Springer, Berlin (2010)CrossRefGoogle Scholar
  10. 10.
    Crisanti, A., Paladin, G., Vulpiani, A.: Products of random matrices: in statistical physics, softcover reprint of the original 1st ed. 1993 edition ed. Springer S.l. (2012)Google Scholar
  11. 11.
    Haus, H.A.: Waves and Fields in Optoelectronics. Prentice Hall, Englewood Cliffs (1984)Google Scholar
  12. 12.
    Deutsch, J.M., Paladin, G.: Product of random matrices in a microcanonical ensemble, Phys. Rev. Lett. 62, 695 (1989)CrossRefGoogle Scholar
  13. 13.
    Comtet, A., Texier, C., Tourigny, Y.: J. Lyapunov exponents, one-dimensional anderson localization and products of random matrices. Phys. A 46, 254003 (2013)Google Scholar
  14. 14.
    Mezard, M., Parisi, G., Virasoro, M.: Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications. World Scientific Lecture Notes in Physics, vol. 9. World Scientific, Teaneck (1986)Google Scholar
  15. 15.
    Molinari, D., Fratalocchi, A.: Route to strong localization of light: the role of disorder, Opt. Express 20, 18156 (2012)CrossRefGoogle Scholar
  16. 16.
    Brongersma, M.L., Hartman, J.W., Atwater, H.A.: Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit, Phys. Rev. B 62, R16356 (2000)CrossRefGoogle Scholar
  17. 17.
    Dal Negro, L., Feng, N.-N.: Spectral gaps and mode localization in fibonacci chains of metal nanoparticles, Opt. Express 15, 14396 (2007)CrossRefGoogle Scholar
  18. 18.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-difference Time- domain Method. Artech House, Boston (2005)Google Scholar
  19. 19.
    Liu, C., van der Wel, R.E.C., Rotenberg, N., Kuipers, L., Krauss, T.F., Di Falco, A., Fratalocchi, A.: Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs, Nat. Phys. 11, 358 (2015)CrossRefGoogle Scholar
  20. 20.
    Han, M.H., Dutton, R.W., Fan, S.H.: IEEE Microwave Wireless Compon. Lett. 16, 119 (2006)CrossRefGoogle Scholar
  21. 21.
    Totero Gongora, J. S., Fratalocchi, A.: Ab-initio techniques for light matter interaction at the nanoscale, in Computational Chemistry Methodology in Structural Biology and Material Sciences, Apple Academic Press, Oakville, Canada (to appear, expected Dec. 2015)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Juan Sebastian Totero Gongora
    • 1
  • Andrea Fratalocchi
    • 1
  1. 1.PRIMALIGHTKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia