Skip to main content

Upconversion Enhancement in Lanthanide-Doped Nanoparticles Using Nanoplasmonics

  • Living reference work entry
  • First Online:
  • 413 Accesses

Synonyms

Anti-stokes luminescence; Emission enhancement; Nanoplasmonic enhancement

Definition

Upconversion is a process in which the sequential absorption of two (or more) low-energy photons leads to the emission of one photon with higher energy. The upconversion process can occur in materials such as lanthanide-doped nanoparticles and can be enhanced by the strong local electric field found in the proximity of metallic (plasmonic) nanostructures.

Overview

Nanomaterials have attracted considerable attention due to their size-dependent properties, allowing many interesting and sometimes novel features to be observed [1]. Of particular interest are luminescent nanoparticles as they have been touted to find widespread integration in applications ranging from the realization of display devices to bioimaging [2]. One particular class of luminescent nanomaterials that has garnered considerable interest is the lanthanide (Ln3+)-doped upconverting nanoparticles (UCNPs). These UCNPs are...

This is a preview of subscription content, log in via an institution.

References

  1. Cao, G.: Nanostructures and Nanomaterials: Synthesis, Properties and Applications, p. 581. Imperial College Press, London (2004)

    Book  Google Scholar 

  2. Chen, X., Liu, Y., Tu, D.: Lanthanide-Doped Luminescent Nanomaterials: From Fundamentals to Bioapplications (Nanomedicine and Nanotoxicology). Springer, Berlin/Heidelberg (2014)

    Book  Google Scholar 

  3. Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139 (2004)

    Article  Google Scholar 

  4. Liu, Y., Ai, K., Lu, L.: Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting. Nanoscale 3, 4804 (2011)

    Article  Google Scholar 

  5. Boyer, J.-C., van Veggel, F.C.: Absolute quantum yield measurements of colloidal NaYF4:Er3+/Yb3+ upconverting nanoparticles. Nanoscale 2, 1417 (2010)

    Article  Google Scholar 

  6. Liu, G., Jacquier, B. (eds.): Spectroscopic Properties of Rare Earths in Optical Materials. Springer, Tsinghua (2005)

    Google Scholar 

  7. Shvets, G., Tsukerman, I. (eds.): Plasmonics and Plasmonic Metamaterials. Analysis and Applications, vol. 4. World Scientific, Singapore (2012)

    Google Scholar 

  8. Fisher, S., Hallermann, F., Eichellkraut, T., Plessen, G.V., Kramer, K.W., Biner, D., Steinkemper, H., Hermle, M., Goldschmidth, J.C.: Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions. Opt. Express 20, 271 (2012)

    Article  Google Scholar 

  9. Anger, P., Bharadwaj, P., Novotny, L.: Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)

    Article  Google Scholar 

  10. Garcia, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44, 283001 (2011)

    Article  Google Scholar 

  11. http://nanocomposix.com/

  12. Pollnau, M., Gamelin, D.R., Lüthi, S.R., Güdel, H.U.: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B: Condens. Matter 61, 3337 (2000)

    Article  Google Scholar 

  13. Esteban, R., Laroche, M., Greffet, J.J.: Influence of metallic nanoparticles on upconversion processes. J. Appl. Phys. 105, 033107 (2009)

    Article  Google Scholar 

  14. Rohani, S.: Coupling of gold nanorods with lanthanide-doped upconverting nanoparticles for luminescence enhancement and nanothermometry. Master’s Thesis, INRS-EMT (2015)

    Google Scholar 

  15. Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)

    Article  Google Scholar 

  16. Forster, T.: Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 437, 55 (1948)

    Article  Google Scholar 

  17. Saboktakin, M., Ye, X., Oh, S.J., Hong, S.-H., Fafarman, A.T., Chettiar, U.K., Engheta, N., Murray, C.B., Kagan, C.R.: Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 6, 8758 (2012)

    Article  Google Scholar 

  18. Mertens, H., Polman, A.: Strong luminescence quantum efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes. J. Appl. Phys. 105, 044302 (2009)

    Article  Google Scholar 

  19. Mertens, H., Koenderink, A.F., Polman, A.: Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys. Rev. B 76, 115123 (2007)

    Article  Google Scholar 

  20. Lu, D., Cho, S.K., Ahn, S., Brun, L., Summers, C.J., Park, W.: Plasmon enhancement mechanism for the upconversion processes in NaYF4:Yb(3+), Er(3+) nanoparticles: Maxwell versus Forster. ACS Nano 8, 7780 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Razzari or Fiorenzo Vetrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Rohani, S., Quintanilla, M., Naccache, R., Morandotti, R., Razzari, L., Vetrone, F. (2015). Upconversion Enhancement in Lanthanide-Doped Nanoparticles Using Nanoplasmonics. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100981-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100981-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics