Skip to main content

Conductivity of Metal Nanowires Studied by Infrared Plasmon-Polariton Spectroscopy

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Electrical conductivity; Localized plasmon polaritons in the infrared; Nanoantennas

Definition

Metal nanorods of a few micron length and a much smaller diameter feature strong plasmonic resonances in the infrared region and therefore act rather similar to radio antennas, but the spectral shape of such resonances is related to the conductivity of the nanoantenna material. In the scientific literature, analytic approaches exist which explain the relationship between the electronic conductivity and the resonance spectrum that is due to plasmon polaritons as mixed excitations from free electrons and photons.

Introduction

Metal nanowires are produced, for example, by electron-beam lithography (EBL), electrochemical, and wet chemical methods [1]. Usually they are inspected by scanning electron microscopy (SEM) or atomic force microscopy (AFM) in order to get geometric information; see Fig. 1. But, neither SEM nor AFM can deliver conductivity information of a nanoobject. Electrical...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pucci, A., Neubrech, F., Aizpurua, J., Cornelius, T., de la Chapelle, M.L.: Electromagnetic nanowire resonances for field-enhanced spectroscopy. In: Wang, Z. (ed.) One-Dimensional Nanostructures, pp. 175–216. Springer, New York (2008)

    Chapter  Google Scholar 

  2. Steinhögl, W., Schindler, G., Steinlesberger, G., Engelhardt, M.: Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002)

    Article  Google Scholar 

  3. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Sounders College Publishing, Orlando (1976)

    Google Scholar 

  4. Abeles, F.: Optical properties of metals. In: Abeles, F. (ed.) Optical Properties of Solids, pp. 93–162. North Holland, Amsterdam (1972)

    Google Scholar 

  5. Ordal, M.A., Bell, R.J., Alexander Jr., R.W., Long, L.L., Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Optics 24, 4493–4499 (1985)

    Article  Google Scholar 

  6. Young, C.-Y.: The frequency and temperature dependence of the optical effective mass of conduction electrons in simple metals. J. Phys. Chem. Solids 30, 2765–2769 (1969)

    Article  Google Scholar 

  7. Ziman, J.M.: Principles of the Theory of Solids. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  8. McKay, J.A., Rayne, J.A.: Temperature dependence of the infrared absorptivity of the noble metals. Phys. Rev. B 13, 673–685 (1976)

    Article  Google Scholar 

  9. Bittar, A.: The Bruggeman Effective Medium Theory Applied to the Optical Properties of Inhomogeneous Materials. Physics and Engineering Laboratory, Lower Hutt (1984)

    Google Scholar 

  10. Zhang, X., Stroud, D.: Optical and electrical properties of thin films. Phys. Rev. B 52, 2131–2137 (1995)

    Article  Google Scholar 

  11. Novotny, L.: Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007)

    Article  Google Scholar 

  12. Sarid, D., Challener, W.A.: Modern Introduction to Surface Plasmons. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  13. Kats, M.A., Yu, N., Genevet, P., Gaburro, Z., Capasso, F.: Effect of radiation damping on the spectral response of plasmonic components. Opt. Express 19, 21748–21753 (2011)

    Article  Google Scholar 

  14. Doyle, W.T.: Electrodynamic response of metal spheres. J. Opt. Soc. Am. A 2, 1031–1034 (1985)

    Article  Google Scholar 

  15. Pelton, M., Bryant, G.: Introduction to Metal-Nanoparticle Plasmonics. Wiley, Hoboken (2013)

    Google Scholar 

  16. Weber, D., Pucci, A.: Antenna interaction in the infrared. In: de la Chapelle, M.L., Pucci, A. (eds.) Nanoantenna: Plasmon -Enhanced Spectroscopies for Biotechnological Applications, pp. 175–194. Pan Stanford Publishing, Singapore (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Vogt, J., Huck, C., Neubrech, F., Pucci, A. (2015). Conductivity of Metal Nanowires Studied by Infrared Plasmon-Polariton Spectroscopy. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100977-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100977-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics