Skip to main content

Nanowire FET Simulations Based on the Nonequilibrium Green’s Function Formalism

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Nanotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sze, S.M., Lee, M.-K.: Semiconductor Devices: Physics and Technologies. Wiley, New York (2012)

    Google Scholar 

  2. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305 (2003)

    Article  Google Scholar 

  3. Lo, S.-H., Buchanan, D.A., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFETs. IEEE Trans. Electron. Dev. 18, 209 (1997)

    Article  Google Scholar 

  4. Tsutsui, G., Saitoh, M., Nagumo, T., Hiramoto, T.: Impact of SOI thickness fluctuation on threshold voltage variation in ultra-thin body SOI MOSFETs. IEEE Trans. Nanotechnol. 4, 369 (2005)

    Article  Google Scholar 

  5. Knoch, J., Lengeler, B., Appenzeller, J.: Quantum simulations of an ultrashort channel single-gated n-MOSFET on SOI. IEEE Trans. Electron. Dev. 49, 1212 (2002)

    Article  Google Scholar 

  6. Auth, C., et al.: A 22 nm high performance and low-power CMOS technology featuring fully-depleted TriGate transistors, self-aligned contacts and high density MIM capacitors. 2012 VLSI Symp., 131 (2012)

    Google Scholar 

  7. Auth, C.P., Plummer, J.D.: Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron. Dev. Lett. 18, 74 (1997)

    Article  Google Scholar 

  8. Knoch, J., Riess, W., Appenzeller, J.: Outperforming the conventional scaling rules in the quantum-capacitance limit. IEEE Electron. Dev. Lett. 29, 372 (2008)

    Article  Google Scholar 

  9. Knoch, J.: One-dimensional field-effect transistors. In: Jiannian, Y., Zhai, T. (eds.) One-Dimensional Nanostructures: Principles and Applications. Wiley, Hoboken (2012)

    Google Scholar 

  10. Bjoerk, M.T., Schmid, H., Knoch, J., Riel, H., Riess, W.: Dopant deactivation in silicon nanostructures. Nature Nanotechnol. 4, 103 (2009)

    Article  Google Scholar 

  11. Knoch, J., Zhang, M., Mantl, S., Appenzeller, J.: On the performance of single-gated ultrathin body SOI Schottky-barrier MOSFETs. IEEE Trans. Electron. Dev. 53, 1669 (2006)

    Article  Google Scholar 

  12. Pikus, F.G., Likharev, K.K.: Nanoscale field-effect transistor: an ultimate size analysis. Appl. Phys. Lett. 71, 3661 (1997)

    Article  Google Scholar 

  13. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  15. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997)

    Article  Google Scholar 

  16. Schäfer, W., Wegener, M.: Semiconductor Optics and Transport Phenomena. Springer, Berlin (2002)

    Book  Google Scholar 

  17. Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, New York (1998)

    Google Scholar 

  18. Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365 (1983)

    Article  Google Scholar 

  19. Støvneng, J.A., Lipavský, P.: Multiband tight-binding approach to tunneling in semiconductor heterostructures – application to gamma-X transfer in GaAs. Phys. Rev. B 49, 16494 (1994)

    Article  Google Scholar 

  20. Indlekofer, K.M., Knoch, J., Appenzeller, J.: Quantum kinetic description of Coulomb effects in one-dimensional nanoscale transistors. Phys. Rev. B 72, 125308 (2005)

    Article  Google Scholar 

  21. Indlekofer, K.M., Knoch, J., Appenzeller, J.: Understanding Coulomb effects in nanoscale Schottky-barrier FETs. IEEE Trans. Electron. Dev. 54, 1502 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Michael Indlekofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Indlekofer, K.M., Knoch, J. (2015). Nanowire FET Simulations Based on the Nonequilibrium Green’s Function Formalism. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100943-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100943-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics