Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanowire FET Simulations Based on the Nonequilibrium Green’s Function Formalism

  • Klaus Michael Indlekofer
  • Joachim Knoch
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100943-1

Synonyms

Definition

The nonequilibrium Green’s function formalism (NEGF) is a quantum kinetic approach to nonequilibrium electronic transport in nanoelectronic devices. In principle, it is an exact many-body quantum mechanical approach which is able to describe Coulomb interaction and scattering effects in particular. In numerical implementations for the simulation of realistic device structures, however, the Coulomb interaction is often taken into account in terms of a mean field approximation, combined with a decoupled self-energy approximation.

Nanowire Field Effect Transistor

The continued downscaling of the geometric dimensions of metal-oxide-semiconductor field-effect transistors (MOSFET) [1] has been propelled by Moore’s law over the last 40 years, i.e., by the promise of an exponential growth of the number of MOSFETs that fit on a single chip, by a strongly increasing circuit...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Sze, S.M., Lee, M.-K.: Semiconductor Devices: Physics and Technologies. Wiley, New York (2012)Google Scholar
  2. 2.
    Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305 (2003)CrossRefGoogle Scholar
  3. 3.
    Lo, S.-H., Buchanan, D.A., Taur, Y., Wang, W.: Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFETs. IEEE Trans. Electron. Dev. 18, 209 (1997)CrossRefGoogle Scholar
  4. 4.
    Tsutsui, G., Saitoh, M., Nagumo, T., Hiramoto, T.: Impact of SOI thickness fluctuation on threshold voltage variation in ultra-thin body SOI MOSFETs. IEEE Trans. Nanotechnol. 4, 369 (2005)CrossRefGoogle Scholar
  5. 5.
    Knoch, J., Lengeler, B., Appenzeller, J.: Quantum simulations of an ultrashort channel single-gated n-MOSFET on SOI. IEEE Trans. Electron. Dev. 49, 1212 (2002)CrossRefGoogle Scholar
  6. 6.
    Auth, C., et al.: A 22 nm high performance and low-power CMOS technology featuring fully-depleted TriGate transistors, self-aligned contacts and high density MIM capacitors. 2012 VLSI Symp., 131 (2012)Google Scholar
  7. 7.
    Auth, C.P., Plummer, J.D.: Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron. Dev. Lett. 18, 74 (1997)CrossRefGoogle Scholar
  8. 8.
    Knoch, J., Riess, W., Appenzeller, J.: Outperforming the conventional scaling rules in the quantum-capacitance limit. IEEE Electron. Dev. Lett. 29, 372 (2008)CrossRefGoogle Scholar
  9. 9.
    Knoch, J.: One-dimensional field-effect transistors. In: Jiannian, Y., Zhai, T. (eds.) One-Dimensional Nanostructures: Principles and Applications. Wiley, Hoboken (2012)Google Scholar
  10. 10.
    Bjoerk, M.T., Schmid, H., Knoch, J., Riel, H., Riess, W.: Dopant deactivation in silicon nanostructures. Nature Nanotechnol. 4, 103 (2009)CrossRefGoogle Scholar
  11. 11.
    Knoch, J., Zhang, M., Mantl, S., Appenzeller, J.: On the performance of single-gated ultrathin body SOI Schottky-barrier MOSFETs. IEEE Trans. Electron. Dev. 53, 1669 (2006)CrossRefGoogle Scholar
  12. 12.
    Pikus, F.G., Likharev, K.K.: Nanoscale field-effect transistor: an ultimate size analysis. Appl. Phys. Lett. 71, 3661 (1997)CrossRefGoogle Scholar
  13. 13.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1998)Google Scholar
  14. 14.
    Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  15. 15.
    Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997)CrossRefGoogle Scholar
  16. 16.
    Schäfer, W., Wegener, M.: Semiconductor Optics and Transport Phenomena. Springer, Berlin (2002)CrossRefGoogle Scholar
  17. 17.
    Haug, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, New York (1998)Google Scholar
  18. 18.
    Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365 (1983)CrossRefGoogle Scholar
  19. 19.
    Støvneng, J.A., Lipavský, P.: Multiband tight-binding approach to tunneling in semiconductor heterostructures – application to gamma-X transfer in GaAs. Phys. Rev. B 49, 16494 (1994)CrossRefGoogle Scholar
  20. 20.
    Indlekofer, K.M., Knoch, J., Appenzeller, J.: Quantum kinetic description of Coulomb effects in one-dimensional nanoscale transistors. Phys. Rev. B 72, 125308 (2005)CrossRefGoogle Scholar
  21. 21.
    Indlekofer, K.M., Knoch, J., Appenzeller, J.: Understanding Coulomb effects in nanoscale Schottky-barrier FETs. IEEE Trans. Electron. Dev. 54, 1502 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Hochschule RheinMain University of Applied SciencesInstitute of Microtechnologies (IMtech)RüsselsheimGermany
  2. 2.Institute of Semiconductor ElectronicsRWTH Aachen UniversityAachenGermany