Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Metal Nanoparticles from First Principles

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100939-1

Synonyms

Definition

Metal nanoparticles are particles composed of metal elements (most frequently transition metals such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Re, Ru) with a size below ~200 nm and an aspect ratio close to 1 (as opposed to nanowires and nanosheets). Particles smaller than 3 nm (~500–1000 atoms) are also called clusters.

A first-principles approach aims at computing the properties of a system by directly solving the quantum-mechanical Schrodinger equation for atomic cores and electrons without the input of empirical parameters.

Introduction

Metal nanoparticles have been used since ancient times as famously exemplified by the fine Lycurgus Cup in the British Museum. This fourth-century Roman glass cup is green in reflected light and ruby red in transmitted light owing to the presence of gold colloids embedded in the glass, where the size of the colloids does not...

Keywords

Oxygen Reduction Reaction Proton Exchange Membrane Fuel Cell Oleic Acid Concentration Density Functional Theory Approach Small Metal Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Notes

References

  1. 1.
    Wagner, F.E., Haslbeck, S., Stievano, L., Calogero, S., Pankhurst, Q.A., Martinek, K.-P.: Before striking gold in gold-ruby glass. Nature 407, 691–692 (2000)CrossRefGoogle Scholar
  2. 2.
    Martin, R.M.: Electronic structure – basic theory and practical Methods. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  3. 3.
    Sholl, D., Steckel, J.A.: Density Functional Theory: A Practical Introduction. Wiley-Interscience, Hoboken (2009)CrossRefGoogle Scholar
  4. 4.
    Mariscal, M.M., Oviedo, O.A., Leiva, E.P.M.: Metal Clusters and Nanoalloys – From Modeling to Applications. Springer, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Desireddy, A., et al.: Ultrastable silver nanoparticles. Nature 501, 399–402 (2013)CrossRefGoogle Scholar
  6. 6.
    Barnard, A.S.: Direct comparison of kinetic and thermodynamic influences on gold nanomorphology. Acc. Chem. Res. 45, 1688–1697 (2012)CrossRefGoogle Scholar
  7. 7.
    Gruner, M.E., Rollmann, G., Hucht, A., Entel, P.: Structural and magnetic properties of transition metal nanoparticles from first principles. In: Haug, R. (ed.) Advances in Solid State Physics, pp. 117–128. Springer, Berlin (2008)CrossRefGoogle Scholar
  8. 8.
    Chepulskii, R.V., Curtarolo, S.: Ab initio insights on the shapes of platinum nanocatalysts. ACS Nano 5, 247–254 (2011)CrossRefGoogle Scholar
  9. 9.
    Karlberg, G.S., Jaramillo, T.F., Skúlason, E., Rossmeisl, J., Bligaard, T., Nørskov, J.K.: Cyclic voltammograms for H on Pt (111) and Pt(100) from first principles. Phys. Rev. Lett. 99, 126101 (2007)CrossRefGoogle Scholar
  10. 10.
    Bealing, C.R., Baumgardner, W.J., Choi, J.J., Hanrath, T., Hennig, R.G.: Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 6, 2118–2127 (2012)CrossRefGoogle Scholar
  11. 11.
    Mpourmpakis, G., Vlachos, D.G.: Growth mechanisms of metal nanoparticles via first principles. Phys. Rev. Lett. 102, 155505 (2009)CrossRefGoogle Scholar
  12. 12.
    Salvalaglio, M., Vetter, T., Giberti, F., Mazzotti, M., Parrinello, M.: Uncovering molecular details of urea crystal growth in the presence of additives. J. Am. Chem. Soc. 134, 17221–17233 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhou, Y., Saidi, W.A., Fichthorn, K.A.: A force field for describing the polyvinylpyrrolidone-mediated solution-phase synthesis of shape-selective Ag nanoparticles. J. Phys. Chem. C 118, 3366–3374 (2014)CrossRefGoogle Scholar
  14. 14.
    Artrith, N., Kolpak, A.M.: Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett. 14, 2670–2676 (2014)CrossRefGoogle Scholar
  15. 15.
    Persson, K.A., Waldwick, B., Lazic, P., Ceder, G.: Prediction of solid-aqueous equilibria: scheme to combine first-principles calculations of solids with experimental aqueous states. Phys. Rev. B 85, 235438 (2012)CrossRefGoogle Scholar
  16. 16.
    Jennings, P.C., Aleksandrov, H.A., Neyman, K.M., Johnston, R.L.: A DFT study of oxygen dissociation on platinum based nanoparticles. Nanoscale 6, 1153–1165 (2014)CrossRefGoogle Scholar
  17. 17.
    Barcaro, G., Fortunelli, A.: A Magic Pd-Ag Binary Cluster on the Fs-Defected MgO(100) Surface. J. Phys. Chem. C 111, 11384–11389 (2007)CrossRefGoogle Scholar
  18. 18.
    Barnard, A.S., Young, N.P., Kirkland, A.I., van Huis, M.A., Xu, H.: Nanogold: A Quantitative Phase Map. ACS Nano 3, 1431–1436 (2009)CrossRefGoogle Scholar
  19. 19.
    Han, B.C., Miranda, C.R., Ceder, G.: Effect of Particle Size and Surface Structure on Adsorption of O and OH on Platinum Nanoparticles: A First-Principles Study. Phys. Rev. B 77, 075410 (2008). doi:10.1103/PhysRevB.77.075410CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan