Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanorobotics for Synchrotron Radiation Applications

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100927-1

Definition

By nanorobotic manipulation, it is meant that nano-objects are localized, positioned, and placed by controlling external forces under the X-ray beam of a synchrotron.

Introduction

Nanorobotics for Synchrotron Radiation Facilities

In nanosciences and nanotechnology, the frontiers between chemistry, physics, biology, and engineering become blurred, and more and more an integrated, multimodal approach to the characterization of the intrinsic properties of individual nano-objects becomes essential. The goal is to distinguish the properties of the object itself free from object–surface or object–environment interactions. Indeed in the continuous reduction of the device size where smaller and smaller material quantity is involved, the individual properties of each nano-object will tend to modify the collective properties. In this frame, the development of reliable applications, often based on auto-organization process, required the knowledge of the effects that are coming from the...

Keywords

Atomic Force Microscopy Laser Beam Kalman Filter Optical Tweezer European Synchrotron Radiation Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Duesberg, G.S.: Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys. Rev. Lett. 85, 5436 (2000)CrossRefGoogle Scholar
  2. 2.
    Schroer, C.G., et al.: Coherent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101, 090801 (2008)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Rodrigues, M. S., et al.: Local detection of X-ray spectroscopies with an in-situ atomic force microscope. J. Instrum. 3(12), 12004 (2008)Google Scholar
  5. 5.
    Scheler, T., et al.: Probing the elastic properties of individual nanostructures by combining in-situ AFM and micro X-ray diffraction. Appl. Phys. Lett. 94, 023109 (2009)CrossRefGoogle Scholar
  6. 6.
    Ashkin, A., et al.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986)CrossRefGoogle Scholar
  7. 7.
    Guidon, M.: Longitudinal optical binding of high optical contrast microdroplets in air. Phys. Rev. Lett. 96, 143902 (2006)CrossRefGoogle Scholar
  8. 8.
    Dhez, O., et al.: X-tip: a new tool for nanoscience or how to combine X-ray spectroscopies to local probe analysis. AIP Conf. Proc. 879, 1391–1394 (2007)CrossRefGoogle Scholar
  9. 9.
    Kim, P., et al.: Nanotube nanotweezers. Science 286, 2148–2150 (1999)Google Scholar
  10. 10.
    Molhave, K., et al.: Pick-and place nanomanipulation using microfabricated grippers. Nanotechnology 17, 2434–2441 (2006)CrossRefGoogle Scholar
  11. 11.
    Hashiguchi, G.: Micromachined nanotweezer for DNA manipulation in aqueous solution. Anal. Chem. 75, 4347–4350 (2003)CrossRefGoogle Scholar
  12. 12.
    Watanabe, H., et al.: Single molecules DNA devices measured with triple-probe atomic force microscope. Appl. Phys. Lett. 79, 2462–2464 (2001)CrossRefGoogle Scholar
  13. 13.
    Maruo, S., Ikuta, K., Korogi, H.: Submicron manipulation tools driven by light in a liquid. Appl. Phys. Lett. 82, 133 (2003)CrossRefGoogle Scholar
  14. 14.
    Ehrlicher, A., Betz, T., Stuhrmann, B., Koch, D., Milner, V., Raizen, M.G., Kas, J.: Guiding neuronal growth with light. Proc. Natl. Acad. Sci. U. S. A. 99, 16024 (2002)Google Scholar
  15. 15.
    Stuhrmann, B., Gogler, M., Betz, T., Ehrlicher, A., Koch, D., Kas, J.: Automated tracking and laser micromanipulation of motile cells. Rev. Sci. Instrum. 76, 035105 (2005)CrossRefGoogle Scholar
  16. 16.
    Xie, H., Régnier, S.: High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy. IEEE Trans. Nanotechnol. 11(1), 21–33 (2012)CrossRefGoogle Scholar
  17. 17.
    Pawel K. Orzechowski, P.K., Gibson, J.S., Tsao, T-C: Optimal disturbance rejection by LTI feedback control in a laser beam steering system. In: 43rd IEEE Conference on Decision and Control, December 14–17, 2004, pp. 2143–2148, Atlantis (2004)Google Scholar
  18. 18.
    Lee, C.C., Park, J.: Temperature measurement of visible light-emitting diodes using nematic liquid crystal thermography with laser illumination. IEEE Photon. Technol. Lett. 16(7), 1706–1708 (2004)CrossRefGoogle Scholar
  19. 19.
    Evans, R.B., Griesbach, J.S., Messner, W.C.: Piezoelectric microactuator for dual stage control. IEEE Trans. Mag. 35, 977–981 (1999)CrossRefGoogle Scholar
  20. 20.
    Perez-Arancibia, N.O., Gibson, J.S., Tsao, T.-C.: Observer-based intensity-feedback control for laser beam pointing and tracking. IEEE Trans. Control Syst. Technol. 20(1), 31–47 (2012)Google Scholar
  21. 21.
    Devasia, S., Eleftheriou, E., Moheimani, S.: A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15, 802–823 (2007)CrossRefGoogle Scholar
  22. 22.
    Lee, C., Salapaka, S.M.: Robust broadband nanopositioning: fundamental tradeoffs, analysis, and design in a two-degree-of-freedom control framework. Nanotechnology 20, 03501 (2009)Google Scholar
  23. 23.
    Mokaberi, B., Requicha, A.: Drift compensation for automatic nanomanipulation with scanning probe microscopes. IEEE Trans. Autom. Sci. Eng. 3, 199–207 (2006)CrossRefGoogle Scholar
  24. 24.
    Nguyen, T.T., Amthor, A., Ament, C.: High precision laser tracker system for contactless position measurement, 2011. In: IEEE International Conference on Control System, November 25–27, 2011, pp. 97–102, Penang, Malaysia (2011)Google Scholar
  25. 25.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Bas. Engr. 82, 35–45 (1960)CrossRefGoogle Scholar
  26. 26.
    Durrant-Whyte, H., Henderson, T.C.: Multisensor data fusion. In: Springer Handbook of Robotics, pp. 585–610. Springer, Berlin/Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Kuchimaru, T., Sato, F., Higashino, Y., Shimizu, K., Kato, Y., Iida, T.: Microdosimetric characteristics of micro X-ray beam for single cell irradiation. IEEE Trans. Nucl. Sci. 53(3), 1363 (2006)CrossRefGoogle Scholar
  28. 28.
    Amari, N., Folio, D., Ferreira, A.: Motion of a micro/nanomanipulator using a laser beam tracking system. IEEE Int. Conf. Control Syst. Int. J. Optomechatron. 8(1), 30–46 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.INSA Centre Val de LoireUniversité d’OrléansBourgesFrance