Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Micro- and Nanomanipulation for Nanomanufacturing

  • Stefan Johansson
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100923-1



Micro- and nanomanipulation for nanomanufacturing concern the manipulation of micrometer or nanometer sized objects to build nanostructures. In spite of the intuitive impression that the concept in this entry is limited to individual and physical handling of nanoscale objects, also parallel processing with a large degree of self-assembly is normally included in the definition. The manipulation can be made both by physical contact, e.g., electrostatic gripping, and by non-contact techniques, e.g., optical tweezers. The manipulation equipment could be any size while the tool(s) should have a manipulation resolution in the sub-micrometer range.

Essay Disposition

This essay is divided in seven main sections. After a very brief introduction to the “History” of this entry, the “Concepts” used in the text are explained to avoid misunderstandings. There are slight variations of concept definitions depending...


Optical Tweezer Micro Electro Mechanical System Application Specific Integrate Circuit Integrate Circuit Micro System Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Eigler, D.M., Schweizer, E.K.: Positioning single atoms with a scanneling tunneling microscope. Nature 344, 524–526 (1990)CrossRefGoogle Scholar
  2. 2.
    Binning, R., Rohrer, H., Gerber, C., Weibel, E.: Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)CrossRefGoogle Scholar
  3. 3.
    Hatamura, Y., Nakao, M., Sato, T.: Construction of nano manufacturing world. Microsyst. Technol. 1, 155–162 (1995)CrossRefGoogle Scholar
  4. 4.
    Edqvist, E., Snis, N., Mohr, R.C., Scholz, O., Corradi, P., Gao, J., Dieguez, A., Wyrsch, N., Johansson, S.: Evaluation of building technology for mass producible millimeter-sized robots using flexible printed circuit boards. J. Micromech. Microeng. 19, 075011 (2009)CrossRefGoogle Scholar
  5. 5.
    Edqvist, E., Snis, N., Johansson, S.: Gentle dry etching of P(VDF-TrFE) multilayer micro actuator structures by use of an inductive coupled plasma. J. Micromech. Microeng. 18, 015007 (2008)CrossRefGoogle Scholar
  6. 6.
    Mavroidis, C., Ferreira, A. (eds.): Nanorobotics Current Approaches and Techniques. Springer Science+Business Media, New York (2013). ISBN 978-1-4614-2119-1Google Scholar
  7. 7.
    Behkam, B., Sitti, M.: Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl. Phys. Lett. 90, 023902 (2007)CrossRefGoogle Scholar
  8. 8.
    Johansson, S., Schweitz, J.-Å., Tenerz, L., Tirén, J.: Fracture testing of silicon microelements in situ in a scanning electron microscope. J. Appl. Phys. 63, 4799–4803 (1988)CrossRefGoogle Scholar
  9. 9.
    Johansson, S.: Micromanipulation for micro- and nanomanufacturing. In: Proceedings of Emerging Technologies and Factory Automation, Paris, France. vol. 3, pp. 3–8. (1995)Google Scholar
  10. 10.
    Nakajima, M., Hirano, T., Kojima, M., Hisamoto, N., Homma, M., Fukuda, T.: Direct nano-injection method by nanoprobe insertion based on E-SEM nanorobotic manipulation under hybrid microscope. In: IEEE International Conference Robotics and Automation, pp 4139–4144. Shanghai, (2011)Google Scholar
  11. 11.
    Bexell, M., Tiensuu, A.-L., Schweitz, J.-Å., Söderkvist, J., Johansson, S.: Characterization of an inchworm prototype motor. Sens. Actuat. A 43, 322–329 (1994)CrossRefGoogle Scholar
  12. 12.
    He, Y., Chen, S., Yu, Q.: Scanning tunneling microscope (STM). In: Wang, Q., Chung, Y. (eds.) Encyclopedia of Tribology. Springer, Berlin/Heidelberg. SpringerReference. www.springerreference.com. 2013-08-15 16:18:43 UTC. (2013)
  13. 13.
    Sardan, O., Eichhorn, V., Petersen, D.H., Fatikow, S., Sigmund, O., Bøggild, P.: Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19, 495503 (2008)CrossRefGoogle Scholar
  14. 14.
    Matsui, S.: Focused-Ion-Beam Chemical-Vapor-Deposition (FIB-CVD). In: Bhushan, B. (ed.) Encyclopedia of Nanotechnology. Springer, Berlin/Heidelberg. SpringerReference. www.springerreference.com. 2012-08-21 14:20:38 UTC. (2012)
  15. 15.
    Comstock, D.J., Elam, J.W., Pellin, M.J., Hersam, M.C.: High aspect ratio nanoneedle probes with an integrated electrode at the tip apex. Rev. Sci. Instrum. 83, 113704 (2012)CrossRefGoogle Scholar
  16. 16.
    Hertel, T., Martel, R., Avouris, P.: Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B102, 910–915 (1998)CrossRefGoogle Scholar
  17. 17.
    Shekhar, S., Stokes, P., Khondaker, S.I.: Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 5, 1739–1746 (2011)CrossRefGoogle Scholar
  18. 18.
    Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012)CrossRefGoogle Scholar
  19. 19.
    Heller, I., Sitters, G., Broekmans, O.D., Farge, G., Menges, C., Wende, W., Hell, S.W., Peterman, E.J.G., Wuite, G.J.L.: STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat. Methods 10, 910–916 (2013)CrossRefGoogle Scholar
  20. 20.
    Lee, W.K., Dai, Z., King, W.P., Sheehan, P.E.: Maskless nanoscale writing of nanoparticle-polymer composites and nanoparticle assemblies using thermal nanoprobes. Nano Lett. 10, 129–133 (2010)CrossRefGoogle Scholar
  21. 21.
    Ru, C., Luo, J., Xie, S., Sun, Y.: A review of non-contact micro- and nano-printing technologies. J. Micromech. Microeng. 24, 053001 (2014)CrossRefGoogle Scholar
  22. 22.
    Schirmer, N.C., Carmen, K., Schmid, M.S., Burg, B.R., Schwamb, T., Poulikakos, D.: On ejecting colloids against capillarity from submicrometer openings: on-demand dielectrophoretic nanoprinting. Adv. Mater. 22, 4701–4705 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Engineering SciencesUppsala UniversityUppsalaSweden