Skip to main content

Implementing Alternating Nanolaminates in Trenched Energy Storage Systems

  • Living reference work entry
  • First Online:
  • 392 Accesses

Synonyms

Laminates: multilayered structures; Nanocomposite materials; Nanocomposites; Nanolayered coatings; Nanolayers

Overview

The National Academy of Engineering, in its Grand Challenge on “making solar energy economical,” places emphasis on this statement, “However advanced solar cells become at generating electricity cheaply and efficiently, a major barrier to widespread use of the sun’s energy remains: the need for storage” [1].

For energy storage devices, such as the battery and the supercapacitor, the most common problems are shelf/cycle life, lower efficiency, and high leakage current [2, 3]. These are tremendous challenges for an integrated circuit (IC) industry seeking greater IC functionality, smaller component size, and low power consumption using standard supercapacitors, ultracapacitors, or electrochemical capacitors for on-chip energy storage. In addition, the continuous need to reduce the component size of IC elements has not only begun to challenge the capabilities of...

This is a preview of subscription content, log in via an institution.

References

  1. National Academy of Engineering, Grand Challenges for Engineering, www.engineeringchallenges.org

  2. Halper, M., Ellenbogen, J.: Supercapacitors: A Brief Overview. MITRE Nanosystems Group, McLean, VA (2006)

    Google Scholar 

  3. Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer-Plenum, New York (1999)

    Book  Google Scholar 

  4. Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S.B., Rubloff, G.W.: Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 4, 292–296 (2009)

    Article  Google Scholar 

  5. Huang, C., Cheng, C.-H., Lee, K.-T., Liou, B.-H.: High-performance metal-insulator-metal capacitor using quality properties of high- TiPrO dielectric. J. Electrochem. Soc. 156(4), G23–G27 (2009)

    Article  Google Scholar 

  6. Jeon, W., Chung, H.S., Joo, D., Kang, S.W.: TiO2/Al2O3/TiO2 Nanolaminated thin films for DRAM capacitor deposited by plasma-enhanced atomic layer deposition. Electrochem. Solid-State Lett. 11, H19–H21 (2008)

    Article  Google Scholar 

  7. Gerritsen, E., et al.: Evolution of materials technology for stacked-capacitors in 65 nm embedded-DRAM. Solid-State Electron. 49, 1767–1775 (2005)

    Article  Google Scholar 

  8. Kemell, M., et al.: Si/Al2O3/ZnO: Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition. Microelectron. Eng. 84, 313–318 (2007)

    Article  Google Scholar 

  9. Shi, L., Yin, J., Yin, K.B., Gao, F., Xia, Y.D., Liu, Z.G.: An investigation into ultra-thin pseudobinary oxide (TiO2)x(Al2O3)1−x films as high-k gate dielectrics. Appl. Phys. A Mater. Sci. Process. 90, 379–384 (2007)

    Article  Google Scholar 

  10. Jinesh, K.B., Lamy, Y., Klootwijk, J.H., Besling, W.: Maxwell-Wagner instability in bilayer dielectric stacks. Appl. Phys. Lett., 95, 122903 (2009), AIP Publishing LLC. doi:10.1063/1.3236532

    Google Scholar 

  11. Wei, L., et al.: Giant dielectric constant dominated by Maxwell–Wagner relaxation in Al2O3/TiO2 nanolaminates synthesized by atomic layer deposition. Appl. Phys. Lett. 96, 162907 (2010)

    Article  Google Scholar 

  12. Auciello, O.H., Lai, B-K., Lee, G., Katiyar, R.S.: Nanolaminates of Al2O3/TiO2 with Giant dielectric constant low leakage – low loss: extended frequency operation for new-generation nanoelectronics and energy storage devices. Uchicago Argonne LLC., USPTO US 20130264680 A1 (2013)

    Google Scholar 

  13. Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Article  Google Scholar 

  14. Sohn, J., et al.: Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes. Appl. Phys. Lett. 87, 123115 (2005)

    Article  Google Scholar 

  15. George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010)

    Article  Google Scholar 

  16. Ritala, M., Leskelä, M.: Atomic layer deposition. In: Handbook of Thin Film Materials edited by H.S. Nalwa, Academic Press, San Diego, 1(2), p. 103 (2002)

    Google Scholar 

  17. Ladanov, M., Algarin-Amaris, P., Matthews, G., Ram, M., Thomas, S., Kumar, A., Wang, J.: Microfluidic hydrothermal growth of ZnO nanowires over high aspect ratio microstructures. Nanotechnology 24(37) p. 1–9 (2013)

    Google Scholar 

  18. Ladanov, M., Algarin Amaris, P., Villalba, P., Emirov, Y., Matthews, G., Ram, M.K., Thomas, S., Wang, J., Kumar, A.: Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires. J. Phy. Chem. Solids, Ms. Ref. No.: PCS-D-13-00179R1 74, 1578-1588 (2013)

    Google Scholar 

  19. Xing, Q.F., Sasaki, G., Fukunaga, H.: Interfacial microstructure of anodic bonded Al/glass. J. Mater. Sci. Mater. Electron. 13, 83–88 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia W. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Thomas, S.W., Wang, J., Algarin, P.A. (2015). Implementing Alternating Nanolaminates in Trenched Energy Storage Systems. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100911-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100911-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics