Advertisement

Application of Quantum Mechanics and Molecular Mechanics in Chemoinformatics

  • Natalia Sizochenko
  • D. Majumdar
  • Szczepan Roszak
  • Jerzy Leszczynski
Living reference work entry

Abstract

Quantum chemical and molecular mechanics-generated structure and reactivity parameters comprise a part of chemoinformatics, where such parameters are stored and properly indexed for search-information of a related molecule or a set of molecular systems. The present review makes a general survey of the various computable quantum chemical parameters for molecules. These could be used for quantitative structure activity relation (QSAR) modeling. The applicability of various quantum chemical techniques for such property (QSAR parameters) is also discussed and density functional theory (DFT)-related techniques have been advocated to be quite useful for such purposes. Molecular mechanics methods, although mostly useful for less time consuming structure calculations and important in higher level molecular dynamics and Monte-Carlo simulations, are sometimes useful to generate structure-related descriptors for QSAR analysis. A brief discussion in this connection with molecular mechanics-related QSAR modeling is included to show the use of such descriptors.

Keywords

Density Functional theoryDensity Functional Theory Partial Little Square Molecular Electrostatic potentialMolecular Electrostatic Potential Quantitative Structure Activity Relation Quantitative Structure Activity Relation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the support of NSF CREST (No.: HRD-0833178) grant. One of the authors (S.R.) acknowledges the financial support by a statutory activity subsidy from Polish Ministry of Science and Technology of Higher Education for the Faculty of Chemistry of Wroclaw University of Science and Technology and NCN grant no UMO-2013/09/B/ST4/00097.

Bibliography

  1. Alsberg, B. K., Marchand-Geneste, N., & King, R. D. (2000). A new 3D molecular structure representation using quantum topology with application to structure–property relationships. Chemometrics and Intelligent Laboratory Systems, 54, 75.CrossRefGoogle Scholar
  2. Alves, C. N., Pinheiro, J. C., Camargo, A. J., Ferreira, M. M. C., & da Silva, A. B. F. (2000). A structure–activity relationship study of HEPT-analog compounds with anti-HIV activity. Journal of Molecular Structure (THEOCHEM), 530, 39.CrossRefGoogle Scholar
  3. Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97, 10269.CrossRefGoogle Scholar
  4. Bhat, S., Sulea, T., & Purisima, E. O. (2006). Coupled atomic charge selectivity for optimal ligand-charge distributions at protein binding sites. Journal of Computational Chemistry, 27, 1899.CrossRefGoogle Scholar
  5. Bhattacharjee, A. K., Majumdar, D., & Guha, S. (1992). Theoretical studies on the conformational properties and pharmacophoric pattern of several bipyridine cardiotonics. Journal of the Chemical Society, Perkin Transactions, 2, 805.CrossRefGoogle Scholar
  6. Brown, F. K. (1998). Chemoinformatics: What is it and how does it impact drug discovery. Annual Reports in Medicinal Chemistry, 33, 375.CrossRefGoogle Scholar
  7. Carbó, R., Leyda, L., & Arnau, M. (1980). How similar is a molecule to another? An electron density measure of similarity between two molecular structures. International Journal of Quantum Chemistry, 17, 1185.CrossRefGoogle Scholar
  8. Cartier, A., & Rivail, J. L. (1987). Electronic descriptors in quantitative structure – Activity relationships. Chemometrics and Intelligent Laboratory Systems, 1, 335.CrossRefGoogle Scholar
  9. Chattaraj, P. K., Sarkar, U., & Roy, D. R. (2006). Electrophilicity index. Chemical Reviews, 106, 2065.CrossRefGoogle Scholar
  10. Franke, R. (1984). Theoretical drug design methods. Amsterdam: Elsevier.Google Scholar
  11. Fukui, K. (1971). Recognition of stereochemical paths by orbital interaction. Accounts of Chemical Research, 4, 57.CrossRefGoogle Scholar
  12. Gaudio, A. C., Korolkovas, A., & Takahata, Y. (1994). Quantitative structure-activity relationships for 1,4-dihydropyridine calcium channel antagonists (nifedipine analogues): A quantum chemical/classical approach. Journal of Pharmaceutical Sciences, 83, 1110.CrossRefGoogle Scholar
  13. Ghose, A. K., Pritchett, A., & Crippen, G. M. (1988). Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships III: Modeling hydrophobic interactions. Journal of Computational Chemistry, 9, 80.CrossRefGoogle Scholar
  14. González-Díaz, H., & Uriarte, E. (2005). Proteins QSAR with Markov average electrostatic potentials. Bioorganic & Medicinal Chemistry Letters, 15, 5088.CrossRefGoogle Scholar
  15. Good, A. C., & Richards, W. G. (1996). The extension and application of molecular similarity calculations to drug design. Drug Information Journal, 30, 371.Google Scholar
  16. Grunenberg, J., & Herges, R. (1995). Prediction of chromatographic retention values (rm) and partition coefficients (log Poct) using a combination of semiempirical self-consistent reaction field calculations and neural networks. Journal of Chemical Information and Computer Sciences, 35, 905.Google Scholar
  17. Guha, S., Majumdar, D., & Bhattacharjee, A. K. (1992). Molecular electrostatic potential: A tool for the prediction of the pharmacophoric pattern of drug molecules. Journal of Molecular Structure (THEOCHEM), 256, 61.CrossRefGoogle Scholar
  18. Hammett, L. P. (1937). The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society, 59, 96.CrossRefGoogle Scholar
  19. Hansch, C. (1969). Quantitative approach to biochemical structure-activity relationships. Accounts of Chemical Research, 2, 232.CrossRefGoogle Scholar
  20. Hansch, C., & Coats, E. (1970). α-chymotrypsin: A case study of substituent constants and regression analysis in enzymic structure – activity relationships. Journal of Pharmaceutical Sciences, 59, 731.CrossRefGoogle Scholar
  21. Hansch, C., Leo, A., & Taft, R. W. (1991). A survey of Hammett substituent constants and resonance and field parameters. Chemical Reviews, 91, 165.CrossRefGoogle Scholar
  22. Jensen, F. (1999). Introduction to computational chemistry. New York: Wiley.Google Scholar
  23. Kadlubanski, P., Calderón-Mojica, K., Rodriguez, W. A., Majumdar, D., Roszak, S., & Leszczynski, J. (2013). Role of the multipolar electrostatic interaction energy components in strong and weak cation −π interactions. The Journal of Physical Chemistry. A, 117, 7989.CrossRefGoogle Scholar
  24. Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96, 1027.CrossRefGoogle Scholar
  25. Kim, K. S., Lee, J. Y., Lee, S. J., Ha, T.-K., & Kim, D. H. (1994). On binding forces between aromatic ring and quaternary ammonium compound. Journal of the American Chemical Society, 116, 7399.CrossRefGoogle Scholar
  26. Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (comsia) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry, 37, 4130.CrossRefGoogle Scholar
  27. Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133.CrossRefGoogle Scholar
  28. Labute, P. (2000). A widely applicable set of descriptors. Journal of Molecular Graphics and Modelling, 18, 464.CrossRefGoogle Scholar
  29. Leach, A. R., & Gillet, V. J. (2007). An introduction to chemoinformatics. Dordrecht: Springer.CrossRefGoogle Scholar
  30. Lewis, D. F. V. (1987). Molecular orbital calculations on solvents and other small molecules: Correlation between electronic and molecular properties ν, αMOL, π*, and β. Journal of Computational Chemistry, 8, 1084.CrossRefGoogle Scholar
  31. Löwdin, P.-O. (1970). On the nonorthogonality problem. Advances in Quantum Chemistry, 5, 185.CrossRefGoogle Scholar
  32. Ma, J. C., & Dougherty, D. A. (1997). The cation −π interaction. Chemical Reviews, 97, 1303.CrossRefGoogle Scholar
  33. Majumdar, D., Roszak, S., & Leszczynski, J. (2006). Probing the acetylcholinesterase inhibition of sarin: A comparative interaction study of the inhibitor and acetylcholine with a model enzyme cavity. The Journal of Physical Chemistry. B, 110, 13597.CrossRefGoogle Scholar
  34. Majumdar, D., Roszak, S., & Leszczynski, J. (2012). Theoretical studies on the structure and electronic properties of cubic gold nanoclusters. The Canadian Journal of Chemical Engineering, 90, 852.CrossRefGoogle Scholar
  35. Makhija, M., & Kulkarni, V. (2001). Molecular electrostatic potentials as input for the alignment of HIV-1 integrase inhibitors in 3D QSAR. Journal of Computer-Aided Molecular Design, 15, 961.CrossRefGoogle Scholar
  36. Martin, R. L., Davidson, E. R., & Eggers, D. F. (1979). Ab initio theory of the polarizability and polarizability derivatives in H2S. Chemical Physics, 38, 341.CrossRefGoogle Scholar
  37. Milischuk, A., & Matyushov, D. V. (2002). Dipole solvation: Nonlinear effects, density reorganization, and the breakdown of the onsager saturation limit. The Journal of Physical Chemistry. A, 106, 2146.CrossRefGoogle Scholar
  38. Mulliken, R. S. (1955). Electronic population analysis on LCAO–MO molecular wave functions I. The Journal of Chemical Physics, 23, 1833.CrossRefGoogle Scholar
  39. Murray, J. S., Macaveiu, L., & Politzer, P. (2014). Factors affecting the strengths of σ-hole electrostatic potentials. Journal of Computational Science, 5, 590.CrossRefGoogle Scholar
  40. Murray, J. S., Shields, Z. P.-I., Seybold, P. G., & Politzer, P. (2015). Intuitive and counterintuitive noncovalent interactions of aromatic π regions with the hydrogen and the nitrogen of HCN. Journal of Computational Science, 10, 209.CrossRefGoogle Scholar
  41. Oliferenko, A. A., Oliferenko, P. V., Huddleston, J. G., Rogers, R. D., Palyulin, V. A., Zefirov, N. S., & Katritzky, A. R. (2004). Theoretical scales of hydrogen bond acidity and basicity for application in qsar/qspr studies and drug design. Partitioning of aliphatic compounds. Journal of Chemical Information and Computer Sciences, 44, 1042.CrossRefGoogle Scholar
  42. Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512.CrossRefGoogle Scholar
  43. Popelier, P. L. A. (2000). Atoms in molecules: An introduction. New York: Prentice Hall.CrossRefGoogle Scholar
  44. Roos, G., Geerlings, P., & Messens, J. (2009). Enzymatic catalysis: The emerging role of conceptual density functional theory. The Journal of Physical Chemistry. B, 113, 13465.CrossRefGoogle Scholar
  45. Roy, R. K., Krishnamurti, S., Geerlings, P., & Pal, S. (1998). Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: Carbonyl compounds. The Journal of Physical Chemistry. A, 102, 3746.CrossRefGoogle Scholar
  46. Schlick, T. (2002). Molecular modeling and simulation: An interdisciplinary guide. New York: Springer.CrossRefGoogle Scholar
  47. Schwöbel, J., Ebert, R.-U., Kühne, R., & Schüürmann, G. (2009). Modeling the H bond donor strength of -OH, −NH, and -CH sites by local molecular parameters. Journal of Computational Chemistry, 30, 1454.CrossRefGoogle Scholar
  48. Schwöbel, J. A. H., Koleva, Y. K., Enoch, S. J., Bajot, F., Hewitt, M., Madden, J. C., Roberts, D. W., Schultz, T. W., & Cronin, M. T. D. (2011). Measurement and estimation of electrophilic reactivity for predictive toxicology. Chemical Reviews, 111, 2562.CrossRefGoogle Scholar
  49. Scrocco, E., & Tomasi, J. (1973). The electrostatic molecular potential as a tool for the interpretation of molecular properties. Topics in Current Chemistry, 42, 95.Google Scholar
  50. Scrocco, E., & Tomasi, J. (1978). Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. Advances in Quantum Chemistry, 11, 115.CrossRefGoogle Scholar
  51. Stanon, D. L., Dimitrov, S., Gruncharov, V., & Mekenyan, O. G. (2002). Charged partial surface area (CPSA) descriptors QSAR applications. SAR and QSAR in Environmental Research, 13, 341.CrossRefGoogle Scholar
  52. Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S., & Morokuma, K. (1996). ONIOM: A multilayered integrated mo + mm method for geometry optimizations and single point energy predictions. a test for diels − alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition. The Journal of Physical Chemistry, 100, 19357.CrossRefGoogle Scholar
  53. Warshel, A. (1991). Computer modeling of chemical reactions in enzymes and solutions. New York: Wiley.Google Scholar
  54. Weiner, P. K., Langridge, R., Blaney, J. M., Schaefer, R., & Kollman, P. A. (1982). Electrostatic potential molecular surfaces. Proceedings of the National Academy of Sciences of the United States of America, 79, 3754.CrossRefGoogle Scholar
  55. Weinhold, F., & Landis, C. R. (2012). Discovering chemistry with natural bond orbitals. Hoboken: Wiley.CrossRefGoogle Scholar
  56. Woodward, R. B., & Hoffmann, R. (1969). The conservation of orbital symmetry. Angewandte Chemie International Edition in English, 8, 781.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of ChemistryJackson State UniversityJacksonUSA
  2. 2.Advanced Materials Engineering and Modelling Group, Faculty of ChemistryWroclaw University of TechnologyWroclawPoland

Personalised recommendations