Adaptive Locomotion on Uneven Terrains

  • Kris Hauser
Reference work entry


The main advantage of legs over other modes of locomotion, like tracks and wheels, is adaptability to a large variety of terrains. Humanoids and other legged robots can potentially navigate stairs, scramble over rocks, step through thick foliage, and even climb vertical structures like ladders and trees. But it is challenging to enable such forms of locomotion, because the robot must sense the environment and adapt its motion strategies accordingly. This chapter will discuss systems and technical approaches to adaptive locomotion, ranging from classical approaches to the state-of-the-art. Its goal is to provide a high-level survey of the software architecture, mathematical modeling, approaches, and implementation of the major components of terrain-adaptive systems.


  1. 1.
    R.B. McGhee, G.I. Iswandhi, Adaptive locomotion of a multilegged robot over rough terrain. IEEE Trans. Syst. Man Cyber. 9, 176–182 (1979)CrossRefGoogle Scholar
  2. 2.
    S. Hirose, A study of design and control of a quadruped walking vehicle. Int. J. Robot. Res. 3, 113–133 (1984)CrossRefGoogle Scholar
  3. 3.
    J.K. Hodgins, M.H. Raibert, Adjusting step length for rough terrain locomotion. IEEE Trans. Robot. Autom. 7, 289–298 (1991)CrossRefGoogle Scholar
  4. 4.
    U. Saranli, M. Buehler, D.E. Koditschek, RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20, 616–631 (2001)CrossRefGoogle Scholar
  5. 5.
    J. Yamaguchi et al, Development of a Dynamic Biped Walking System for Humanoid Development of a Biped Walking Robot Adapting to the Humans’ Living Floor, in IEEE International Conference on Robotics and Automation, vol. 1, 1996, pp. 232–239Google Scholar
  6. 6.
    Q. Huang, Y. Nakamura, T. Inamura, Humanoids Walk with Feedforward Dynamic Pattern and Feedback, in IEEE International Conference on Robotics and Automation, Seoul, 2001, pp. 4220–4225Google Scholar
  7. 7.
    B.G. Son, J.T. Kim, J.H. Park, Impedance Control for Biped Robot Walking on Uneven Terrain, in IEEE International Conference on Robotics and Automation, Guilin, 2009, pp. 239–244Google Scholar
  8. 8.
    S.N. Yadukumar, M. Pasupuleti, A.D. Ames, Human-Inspired Underactuated Bipedal Robotic Walking with AMBER on Flat-ground, Up-slope and Uneven Terrain, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012, pp. 2478–2483Google Scholar
  9. 9.
    K. Hashimoto, et al., Terrain-Adaptive Control with Small Landing Impact Force for Biped Vehicle, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 2922–2927Google Scholar
  10. 10.
    H.W. Park, A. Ramezani, J.W. Grizzle, A finite-state machine for accommodating unexpected large ground-height variations in bipedal robot walking. IEEE Trans. Robot. 29, 331–345 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Kjita, K. Tani, Adaptive gait control of a biped robot based on realtime sensing of the ground profile. Auton. Robot. 4, 297–305 (1996). Kluwer Academic PublishersGoogle Scholar
  12. 12.
    S. Kagami, et al., Vision-Based 2.5D Terrain Modeling for Humanoid Locomotion, in IEEE International Conference on Robotics and Automation, Taipei, 2003, pp. 2141–2146Google Scholar
  13. 13.
    M.F. Fallon, et al., Drift-Free Humanoid State Estimation Fusing Kinematic, Inertial and LIDAR sensing, in IEEE Humanoids, 2014, pp. 112–119Google Scholar
  14. 14.
    S. Oßwald, et al., Autonomous Climbing of Spiral Staircases with Humanoids, in IEEE/RSJ International Conference on Intelligent Robotics and Systems, 2011Google Scholar
  15. 15.
    S.J. Yi, B.T. Zhang, D.D Lee, Online Learning of Uneven Terrain for Humanoid Bipedal Walking, in Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), 2010Google Scholar
  16. 16.
    K. Nishiwaki, S. Kagami, Walking Control on Uneven Terrain with Short Cycle Pattern Generation, in IEEE Humanoids, 2007, pp. 447–453Google Scholar
  17. 17.
    H.J. Kang, et al., Realization of Biped Walking on Uneven Terrain by New Foot Mechanism Capable of Detecting Ground Surface, in IEEE International Conference on Robotics and Automation, Anchorage, 2010, pp. 5167–5172Google Scholar
  18. 18.
    D. Wooden, et al., Autonomous Navigation for BigDog, in IEEE International Conference on Robotics and Automation, 2010, pp. 4736–4741Google Scholar
  19. 19.
    K. Nishiwaki, J. Chestnutt, S. Kagami, Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor. Int. J. Robot. Res. 33, 1251–1262 (2012)CrossRefGoogle Scholar
  20. 20.
    R. Ozawa, et al., Using Visual Odometry to Create 3D Maps for Online Footstep Planning, in IEEE International Conference on Systems, Man and Cybernetics, vol. 3, 2005, pp. 2643–2648.
  21. 21.
    T. Tamada, et al., High-speed Bipedal Robot Running Using High-speed Visual Feedback, in IEEE Humanoids, 2014Google Scholar
  22. 22.
    A. Hornung et al., OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34, 189–206 (2013)CrossRefGoogle Scholar
  23. 23.
    S.H. Hyon, G. Cheng, Simultaneous Adaptation to Rough Terrain and Unknown External Forces for Biped Humanoids, in IEEE Humanoids, 2007Google Scholar
  24. 24.
    L. Saab et al., Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Trans. Robot. 29, 346–362 (2013)CrossRefGoogle Scholar
  25. 25.
    K. Byl, R. Tedrake, Approximate Optimal Control of the Compass Gait on Rough Terrain, in IEEE International Conference on Robotics and Automation, 2008, pp. 1258–1263Google Scholar
  26. 26.
    G.N. Boone, J.K. Hodgins, Slipping and tripping reflexes for bipedal robots. Auton. Robot. 4,~259–271 (1997)CrossRefGoogle Scholar
  27. 27.
    T. Shiratori, et al., Simulating Balance Recovery Responses to Trips Based on Biomechanical Principles, in Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2009Google Scholar
  28. 28.
    T. Takubo, et al., Rough Terrain Walking for Bipedal Robot by Using ZMP Criteria Map, in IEEE International Conference on Robotics and Automation, 2009, pp. 788–793.
  29. 29.
    A. Stumpf, et al., Supervised Footstep Planning for Humanoid Robots in Rough Terrain Tasks using a Black Box Walking Controller, in IEEE Humanoids, Madrid, 2014, pp. 287–294Google Scholar
  30. 30.
    J. Chestnutt, et al., Footstep Planning for the Honda ASIMO Humanoid, in IEEE International Conference on Robotics and Automation, 2005, pp. 629–634Google Scholar
  31. 31.
    J. Garimort, A. Hornung, Humanoid Navigation with Dynamic Footstep Plans, in IEEE International Conference on Robotics and Automation, 2011, pp. 3982–3987Google Scholar
  32. 32.
    A. Hornung, et al., Anytime Search-Based Footstep Planning with Suboptimality Bounds, in IEEE Humanoids, 2012, pp. 674–679Google Scholar
  33. 33.
    M.A. Hopkins, D.W. Hong, A. Leonessa, Humanoid Locomotion on Uneven Terrain Using the Time-Varying Divergent Component of Motion. in IEEE Humanoids, 2014, pp. 266–272Google Scholar
  34. 34.
    S. Lengagne et al., Generation of whole-body optimal dynamic multi-contact motions. Int. J. Robot. Res. 32, 1104–1119 (2013). CrossRefGoogle Scholar
  35. 35.
    Y. Zhao, L. Sentis, A Three Dimensional Foot Placement Planner for Locomotion in Very Rough Terrains, in IEEE Humanoids, 2012, pp. 726–733Google Scholar
  36. 36.
    O. Ramos, K. Hauser, Generalizations of the Capture Point to Nonlinear Center of Mass Paths and Uneven Terrain, in IEEE International Conference on Humanoid Robot, 2015Google Scholar
  37. 37.
    H. Dai, A. Valenzuela, R. Tedrake, Whole-body Motion Planning with Centroidal Dynamics and Full Kinematics, in IEEE Humanoids, 2014Google Scholar
  38. 38.
    K. Harada, et al., Natural Motion Generation for Humanoid Robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 833–839Google Scholar
  39. 39.
    T. Bretl, Motion planning of multi-limbed robots subject to equilibrium constraints: the free-climbing robot problem. Int. J. Robot. Res. 25, 317–342 (2006)CrossRefGoogle Scholar
  40. 40.
    K. Hauser et al., Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 27,~1325–1349 (2008). CrossRefGoogle Scholar
  41. 41.
    A. Escande, A. Kheddar, S. Miossec, Planning contact points for humanoid robots. J. Robot. Auton. Syst. 61, 428–442 (2013)CrossRefGoogle Scholar
  42. 42.
    K. Hauser, et al., Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots, in Algorithmic Foundation of Robotics VII, Springer Berlin Heidelberg, 2008, pp. 507–522Google Scholar
  43. 43.
    M. Benallegue, J.P. Laumond, Metastability for High-Dimensional Walking Systems on Stochastically Rough Terrain, in Robotics: Science and Systems Conference, 2015Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering (ECE), Mechanical Engineering and Materials Science (MEMS)Duke UniversityDurhamUSA

Personalised recommendations