Advertisement

Obeying Constraints During Motion Planning

  • Dmitry Berenson
Reference work entry

Abstract

Every practical motion planning problem in robotics involves constraints. Whether the robot must avoid collision or joint limits, there are always states that are not permissible. Some constraints are straightforward to satisfy, while others can be so stringent that feasible states are very difficult to find. What makes planning with constraints challenging is that, for many constraints, it is impossible or impractical to provide the planning algorithm with the allowed states explicitly; it must discover these states as it plans. This chapter focuses on constraints relevant to motion planning for humanoids.

References

  1. 1.
    D. Berenson, S. Srinivasa, J. Kuffner, Task space regions: a framework for pose-constrained manipulation planning. Int. J. Robotics Res. 30(12), 1435–1460 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Berenson, S. Srinivasa, Probabilistically complete planning with end-effector pose constraints, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), May 2010Google Scholar
  3. 3.
    J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, H. Inoue, Motion planning for humanoid robots under obstacle and dynamic balance constraints, in IEEE International Conference on Robotics and Automation (ICRA), 2001Google Scholar
  4. 4.
    J. Kuffner, S.M. LaValle, RRT-connect: an efficient approach to single-query path planning, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2000Google Scholar
  5. 5.
    L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  6. 6.
    P. Jiménez, F. Thomas, C. Torras, 3D collision detection: a survey. Comput. Graph. 25(2), 269–285 (2001)CrossRefGoogle Scholar
  7. 7.
    E. Larsen, S. Gottschalk, M. Lin, D. Manocha, Fast proximity queries with swept sphere volumes, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2000Google Scholar
  8. 8.
    I. Sucan, S. Chitta, J. Pan, FCL: a flexible collision library (Accessed 2015). [Online]. Available: http://gamma.cs.unc.edu/FCL/fcl_docs/webpage/generated/index.html
  9. 9.
    F. Kanehiro, H. Hirukawa, Online self-collision checking for humanoids, in 19th Annual Conference of Robotics Society of Japan, 2001Google Scholar
  10. 10.
    K. Okada, T. Ogura, A. Haneda, J. Fujimoto, F. Gravot, M. Inaba, Humanoid motion generation system on hrp2-jsk for daily life environment, in IEEE International Conference Mechatronics and Automation, 2005Google Scholar
  11. 11.
    J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue, Self-collision detection and prevention for humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA), 2002Google Scholar
  12. 12.
    N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, D. Vallejo, OBPRM: an obstacle-based PRM for 3D workspaces, in Proceedings of the Third Workshop on the Algorithmic Foundations of Robotics (WAFR), Aug 1998, pp. 155–168Google Scholar
  13. 13.
    D. Hsu, J. Reif, The bridge test for sampling narrow passages with probabilistic roadmap planners, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2003Google Scholar
  14. 14.
    D. Hsu, G. Sanchez-Ante, H.-L. Cheng, J.-C. Latombe, Multi-level free-space dilation for sampling narrow passages in PRM planning, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2006Google Scholar
  15. 15.
    S. Dalibard, J.-P. Laumond, Control of probabilistic diffusion in motion planning, in Proceedings of the Workshop on the Algorithmic Foundations of Robotics (WAFR), 2008Google Scholar
  16. 16.
    D.M. Liangjun Zhang, Y.J. Kim, A fast and practical algorithm for generalized penetration depth computation, in Robotics: Science and Systems (RSS), 2007Google Scholar
  17. 17.
    L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Rob. 2, 505–518 (2005)CrossRefGoogle Scholar
  18. 18.
    J. Pan, L. Zhang, D. Manocha, Retraction-based RRT planner for articulated models, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2010Google Scholar
  19. 19.
    M. Stilman, Task constrained motion planning in robot joint space, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2007Google Scholar
  20. 20.
    L. Jaillet, J. Cortés, T. Siméon, Sampling-based path planning on configuration-space costmaps. IEEE Trans. Robot. 26(4), 635–646 (2010)CrossRefGoogle Scholar
  21. 21.
    C. Suh, T.T. Um, B. Kim, H. Noh, M. Kim, F.C. Park, Tangent space RRT: a randomized planning algorithm on constraint manifolds, in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011)Google Scholar
  22. 22.
    D. Berenson, J. Chestnutt, S.S. Srinivasa, J.J. Kuffner, S. Kagami, Pose-constrained whole-body planning using task space region chains, in Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2009Google Scholar
  23. 23.
    A. Ambler, R. Popplestone, Inferring the positions of bodies from specified spatial relationships. Artif. Intell. 6(2), 157–174 (1975)MathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Finkel, R. Taylor, R. Bolles, R. Paul, J. Feldman, AL, a programming system for automation, Computer Science Department, Stanford University, Technical Report CS-456, 1974Google Scholar
  25. 25.
    R. Taylor, The synthesis of manipulator control programs from task-level specifications. Ph.D. dissertation, Computer Science Department, Stanford University, 1976Google Scholar
  26. 26.
    L.I. Lieberman, M.A. Wesley, AUTOPASS: an automatic programming system for computer controlled mechanical assembly. IBM J. Res. Dev. 21(4), 321–333 (1977)CrossRefGoogle Scholar
  27. 27.
    E. Drumwright, V. Ng-Thow-Hing, Toward interactive reaching in static environments for humanoid robots, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006Google Scholar
  28. 28.
    M. Vande Weghe, D. Ferguson, S.S. Srinivasa, Randomized path planning for redundant manipulators without inverse kinematics, in Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2007Google Scholar
  29. 29.
    D. Bertram, J. Kuffner, R. Dillmann, T. Asfour, An integrated approach to inverse kinematics and path planning for redundant manipulators, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2006Google Scholar
  30. 30.
    J. De Schutter, T. De Laet, J. Rutgeerts, W. Decre, R. Smits, E. Aertbelien, K. Claes, H. Bruyninckx, Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. Int. J. Robot. Res. (IJRR) 26(5), 433–455 (2007)Google Scholar
  31. 31.
    L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London, 2000), pp. 96–100CrossRefGoogle Scholar
  32. 32.
    Z. Yao, K. Gupta, Path planning with general end-effector constraints: using task space to guide configuration space search, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2005Google Scholar
  33. 33.
    M. Gharbi, J. Cortes, T. Simeon, A sampling-based path planner for dual-arm manipulation, in 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July 2008, pp. 383–388Google Scholar
  34. 34.
    J. Cortes, T. Simeon, Sampling-based motion planning under kinematic loop-closure constraints, in Proceedings of Workshop on the Algorithmic Foundations of Robotics (WAFR), 2004Google Scholar
  35. 35.
    J.H. Yakey, S.M. LaValle, L.E. Kavraki, Randomized path planning for linkages with closed kinematic chains. IEEE Trans. Robot. Autom. 17(6), 951–958 (2001)CrossRefGoogle Scholar
  36. 36.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in IEEE International Conference on Robotics and Automation (ICRA), 2003Google Scholar
  37. 37.
    T. Bretl, S. Lall, Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–807 (2008)CrossRefGoogle Scholar
  38. 38.
    K. Hauser, Fast interpolation and time-optimization with contact. Int. J. Robot. Res. 33(9), 1231–1250 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Caron, Q.C. Pham, Y. Nakamura, Leveraging cone double description for multi-contact stability of humanoids with applications to statics and dynamics, in Proceedings of Robotics: Science and Systems, Rome, July 2015Google Scholar
  40. 40.
    D. Prattichizzo, J.C. Trinkle, in Springer Handbook of Robotics: Grasping, ed. by B. Siciliano, O. Khatib (Springer Science & Business Media, Berlin, 2008)Google Scholar
  41. 41.
    T. Sugihara, Y. Nakamura, Whole-body cooperative balancing of humanoid robot using COG jacobian, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2002Google Scholar
  42. 42.
    R. Diankov, Automated construction of robotic manipulation programs. Ph.D. dissertation, Carnegie Mellon University, Robotics Institute, Aug 2010Google Scholar
  43. 43.
    D. Katz, Y. Pyuro, O. Brock, Learning to manipulate articulated objects in unstructured environments using a grounded relational representation, in Robotics Science and Systems (RSS), 2008Google Scholar
  44. 44.
    J. Sturm, V. Pradeep, C. Stachniss, Learning kinematic models for articulated objects, in Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2009Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations