Advertisement

Toward a Codesign Approach for Versatile and Energy-Efficient Humanoid Robots

  • Jean-Paul Laumond
  • Mehdi Benallegue
Reference work entry

Abstract

From its very origin, research in humanoid robotics have been dominated by two tendencies. First, emphasizing on the mechatronical design of whole-body humanlike walkers gave rise to walking schemes grounded by the control of the foot-ground contact. Second, simple but clever design of bipedal machines enables overcoming this level of control by taking advantage of gravity and by giving rise to passivity-based control schemes. Recent advances in robustness analysis of dynamical systems in general, and bipedal robots in particular, allow evaluating the respective contribution of the mechanical design and the control schemes to dynamic walking. Such dual perspective advocates for the implementation of codesign approaches for the future humanoid robots.

Notes

Acknowledgements

This chapter benefited from discussions with Nicolas Mansard and Justin Carpentier. This work was partially funded by the European Research Council Grant Actanthrope (ERC-ADG 340050).

References

  1. 1.
    F. Asano, Z.-W. Luo, Pseudo virtual passive dynamic walking and effect of upper body as counterweight, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept 2008, pp. 2934–2939Google Scholar
  2. 2.
    M. Benallegue, J.-P. Laumond, A. Berthoz, Contribution of actuated head and trunk to passive walkers stabilization, in ICRA, 2013, May 2013, pp. 5638–5643Google Scholar
  3. 3.
    M. Benallegue, A. Mifsud, F. Lamiraux, Fusion of force-torque sensors, inertial measurements units and proprioception for a humanoid kinematics-dynamics observation, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (IEEE, 2015), pp. 664–669Google Scholar
  4. 4.
    P.A. Bhounsule, J. Cortell, A. Grewal, B. Hendriksen, J.G.D. Karssen, C. Paul, A. Ruina, Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge. Int. J. Robot. Res. 33(10), 1305–1321 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Byl, R. Tedrake, Metastable walking machines. Int. J. Robot. Res. 28(8), 1040–1064 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Collins, A. Ruina, R. Tedrake, M. Wisse, Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)CrossRefGoogle Scholar
  7. 7.
    S.H. Collins, M. Wisse, A. Ruina, A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Eaton, Evolution of humanoid “Body”/Coevolution of “Body” and “Brain”. Evolutionary Humanoid Robotics (Springer, Berlin/Heidelberg, 2015), p. 62Google Scholar
  9. 9.
    P. Geoffroy, N. Mansard, M. Raison, S. Achiche, E. Todorov, From inverse kinematics to optimal control, in Advances in Robot Kinematics (Springer, 2014), pp. 409–418Google Scholar
  10. 10.
    A. Goswami, B. Espiau, A. Keramane, Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Auton. Robot. 4, 273–286 (1997)Google Scholar
  11. 11.
    B. Henze, M.A. Roa, C. Ott, Passivity-based whole-body balancing for torque-controlled humanoid robots in multi-contact scenarios. Int. J. Robot. Res. 35(12), 1522–1543 (2016)Google Scholar
  12. 12.
    A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online walking motion generation with automatic footstep placement. Adv. Robot. 24(5-6), 719–737 (2010)CrossRefGoogle Scholar
  13. 13.
    D.G.E. Hobbelen, M. Wisse, A disturbance rejection measure for limit cycle walkers: the gait sensitivity norm. IEEE Trans. Robot. 23(6), 1213–1224 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in IEEE International Conference on Robotics and Automation, vol. 2, Sept 2003, pp. 1620–1626Google Scholar
  15. 15.
    J.-P. Laumond, M. Benallegue, J. Carpentier, A. Berthoz, The Yoyo-man, in International Symposium on Robotics Research (ISRR), Sestri Levante, Sept 2015Google Scholar
  16. 16.
    L. Manuelli, R. Tedrake, Localizing external contact using proprioceptive sensors: the contact particle filter, in IEEE-RSJ International Conference on Intelligent Robots & Systems, Oct 2016Google Scholar
  17. 17.
    T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9(2):62–82 (1990)CrossRefGoogle Scholar
  18. 18.
    M.E. Moran, The da vinci robot. J. Endourol. 20(12), 986–990 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Pajon, G. De Magistris, S. Miossec, K. Kaneko, A. Kheddar, A humanoid walking pattern generator for sole design optimization, in 2015 International Conference on Advanced Robotics (ICAR) (IEEE, 2015), pp. 105–110Google Scholar
  20. 20.
    A.D. Prete, N. Mansard, Robustness to joint-torque-tracking errors in task-space inverse dynamics. IEEE Trans. Robot. 32(5), 1091–1105 Oct (2016)CrossRefGoogle Scholar
  21. 21.
    N. Rotella, M. Bloesch, L. Righetti, S. Schaal, State estimation for a humanoid robot, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2014), pp. 952–958Google Scholar
  22. 22.
    C.O Saglam, K. Byl, Metastable legged locomotion: methods to quantify and optimize reliability. in Micro- and Nanotechnology Sensors, Systems, and Applications VII, 94671T (2015)Google Scholar
  23. 23.
    G. Saurel, J. Carpentier, N. Mansard, J.-P. Laumond, A simulation framework for simultaneous design and control of passivity based walkers, in 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots SIMPAR, San Francisco, Dec 2016Google Scholar
  24. 24.
    A.L. Schwab, M. Wisse, Basin of attraction of the simplest walking model, in Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2001, p. 21363Google Scholar
  25. 25.
    M. Vukobratović, B. Borovac, Zero-moment point—thirty five years of its life. Int. J. Humanoid Rob. 1(1), 157–173 (2004)Google Scholar
  26. 26.
    M. Wisse, Three additions to passive dynamic walking: actuation, an upper body, and 3D stability. Int. J. Humanoid Rob. 2(4), 459–478 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.LAAS-CNRSUniversity de ToulouseToulouseFrance
  2. 2.AISTTsukuba, IbarakiJapan

Personalised recommendations