Whole-Body Control of Humanoid Robots

  • Federico L. Moro
  • Luis Sentis
Reference work entry


Whole-body controllers have become a well-adopted control paradigm for humanoid robots, uniting communities working on control systems and sensor-based techniques. These communities have focused on developing simple design tools and adopting common math representations. As such, we are now closer than ever toward sharing common techniques that work across platforms and making the process of designing controllers as easy as possible, with the hope of one day to completely automate the controller design process for all types of humanoid robots. At the same time, current whole-body controllers suffer from important limitations that prevent them from achieving highly agile dynamic behaviors, operating with high mechanical and electronic efficiency, be safe at high speeds in terms of human-robot interactions, and be easy to deploy with minimal designer tuning. This chapter aims to explore various key issues in whole-body control of humanoid robots, including (i) providing an in-depth overview of state-of-the-art techniques, (ii) providing a list of references to open-source software implementations, (iii) discussing performance differences between the various types of architectures, and (iv) analyzing limitations and future research directions for optimal performance.


  1. 1.
    D.E. Whitney, Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 10, 47–53 (1969)CrossRefGoogle Scholar
  2. 2.
    M. Uchiyama, Study on dynamic control of artificial arms – part 1. Trans. Jpn. Soc. Mech. Eng. C 45, 314–322 (1979)Google Scholar
  3. 3.
    M. Vukobratovic, M. Kircanski, A dynamic approach to nominal trajectory synthesis for redundant manipulators. IEEE Trans. Syst. Man Cybern. 14(4), 580–586 (1984)CrossRefGoogle Scholar
  4. 4.
    T. Yoshikawa, Analysis and control of robot manipulators with redundancy, in First International Symposium on Robotics Research, ed. by M. Brady, R. Paul (MIT Press, 1984), pp. 735–747Google Scholar
  5. 5.
    J.M. Hollerbach, K.C. Suh, Redundancy Resolution of Manipulators through Torque Optimization. AI Memo 882 (1986)Google Scholar
  6. 6.
    O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)Google Scholar
  7. 7.
    Y. Nakamura, H. Hanafusa, T. Yoshikawa, Task-priority based redundancy control of robot manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)CrossRefGoogle Scholar
  8. 8.
    B. Siciliano, J.J.E. Slotine, A general framework for managing multiple tasks in highly redundant robotic systems, in International Conference on Advanced Robotics (ICAR), “Robots in Unstructured Environments”, 1991Google Scholar
  9. 9.
    F. Mussa-Ivaldi, N. Hogan, Integrable solutions of kinematic redundancy via impedance control. Int. J. Robot. Res. 10(5), 481–491 (1991)CrossRefGoogle Scholar
  10. 10.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, 2003Google Scholar
  11. 11.
    L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robot. 2(4), 505–518 (2005)CrossRefGoogle Scholar
  12. 12.
    M. Vukobratovic, B. Borovac, Zero-moment point – thirty five years of its life. Int. J. Humanoid Robot. 1(1), 153–173 (2004)Google Scholar
  13. 13.
    J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), Genova, 2006Google Scholar
  14. 14.
    D.E. Orin, A. Goswami, S.-H. Lee, Centroidal dynamics of a humanoid robot. Auton. Robot. 35(2), 161–176 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Wensing, D.E. Orin, Improved computation of the humanoid centroidal dynamics and application for whole-body control. Int. J. Humanoid Robot. 13(1) (2016). Scholar
  16. 16.
    F.L. Moro, Use of gravitational stiffness in an attractor-based whole-body motion control approach, in IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul (2015)Google Scholar
  17. 17.
    F.L. Moro, Balancing while executing competing reaching tasks: an attractor-based whole-body motion control system using gravitational stiffness. Int. J. Humanoid Robot. 13(1) (2016). Scholar
  18. 18.
    Y. Zhao, N. Paine, L. Sentis, Feedback parameter selection for impedance control of series elastic actuators, in IEEE-RAS International Conference on Humanoid Robots, Madrid, 2014Google Scholar
  19. 19.
    M. Gienger, M. Toussaint, C. Goerick, Whole-body motion planning – building blocks for intelligent systems, in Motion Planning for Humanoid Robots, ed. by K. Harada, E. Yoshida, and K. Yokoi (Springer, 2010)Google Scholar
  20. 20.
    N. Mansard, O. Khatib, A. Kheddar, A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans. Robot. 25(3), 670–685 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Dietrich, T. Wimböck, A. Albu-Schäffer, Dynamic Whole-Body Mobile Manipulation with a Torque Controlled Humanoid Robot via Impedance Control Laws, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco (2011)Google Scholar
  22. 22.
    M. Mistry, L. Righetti, Operational space control of constrained and underactuated systems, in Robotics: Science and Systems (RSS), Sydney, 2012Google Scholar
  23. 23.
    F.L. Moro, M. Gienger, A. Goswami, N.G. Tsagarakis, D.G. Caldwell, An attractor-based Whole-Body Motion Control (WBMC) system for humanoid robots, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, 2013Google Scholar
  24. 24.
    O. Kanoun, F. Lamiraux, P.-B. Wieber, Kinematic control of redundant manipulators: generalizing the task priority framework to inequality tasks. IEEE Trans. Robot. 27(4), 785–792 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Escande, N. Mansard, P.-B. Wieber, Hierarchical quadratic programming: Fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Salini, S. Barthélemy, P. Bidaud, LQP controller design for generic whole body motion, in Climbing and Walking Robots and the Support Technologies for Mobile Machines, Istanbul, 2009Google Scholar
  27. 27.
    A. Del Prete, F. Romano, L. Natale, G. Metta, G. Sandini, F. Nori, Prioritized optimal control, in IEEE International Conference on Robotics and Automation, Hong Kong, 2014Google Scholar
  28. 28.
    A. Herzog, L. Righetti, F. Grimminger, P. Pastor, S. Schaal, Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014Google Scholar
  29. 29.
    H. Dai, A. Valenzuela, R. Tedrake, Whole-body motion planning with centroidal dynamics and full kinematics, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, 2014Google Scholar
  30. 30.
    S. Feng, E. Whitman, X. Xinjilefu, C.G. Atkeson, Optimization-based Full Body Control for the DARPA Robotics Challenge. J. Field Robot. 32(2), 293–312 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Koolen, S. Bertrand, T. de Boer, T. Wu, J. Smith, J. Englsberger, J. Pratt, Design of a momentum-based control framework and application to the humanoid robot Atlas. Int. J. Humanoid Robot. 13(1) (2016)CrossRefGoogle Scholar
  32. 32.
    M.A. Hopkins, D. Hong, A. Leonessa, Optimization-based whole-body control of thor, a series elastic humanoid robot. Int. J. Humanoid Robot. 13(1) (2016)Google Scholar
  33. 33.
    D.H. Kim, Y. Zhao, B. Fernandez, L. Sentis, Stabilizing series-elastic point-foot bipeds using whole-body operational space control. IEEE Trans. Robot. 32, 1362–1379 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Dietrich, C. Ott, A. Albu-Schäffer, Multi-objective compliance control of redundant manipulators: hierarchy, control, and stability, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo (2013)Google Scholar
  35. 35.
    Y. Zhao, N. Paine, K.S. Kim, L. Sentis, Stability and performance limits of latency-prone distributed feedback controllers. IEEE Trans. Ind. Electron. 62(11), 7151–7162 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Focchi, G.A. Medrano-Cerda, T. Boaventura, M. Frigerio, C. Semini, J. Buchli, D.G. Caldwell, Robot impedance control and passivity analysis with inner torque and velocity feedback loops. Control Theory Technol. 14(2), 97–112 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Industrial Technologies and Automation (ITIA)National Research Council (CNR) of ItalyMilanoItaly
  2. 2.Human Centered Robotics LaboratoryThe University of Texas at AustinAustinUSA

Personalised recommendations