CPG-Based Control of Humanoid Robot Locomotion

  • Florin Dzeladini
  • Nadine Ait-Bouziad
  • Auke Ijspeert
Reference work entry


Central pattern generators (CPGs) are neural circuits found in vertebrate and invertebrate animals that produce oscillatory patterns for rhythmic motor behaviors. When applied to robotics, they are often used as building blocks for the generation of walking controllers. From a mathematical viewpoint, CPGs are dynamical systems exhibiting limit cycle behaviors, which offer several advantages when applied to the locomotion of robots. One of their main advantages is that they can be dynamically coupled to the mechanical system, which can enforce the synchronization of the CPG network with the body and the environment, through mechanical entrainment using resonance tuning or through explicit learning of the frequency components and the phases of an external signal. Moreover, they permit easy modulation of the gait speed and incorporation of gait transition mechanisms. The recovery from perturbations is also inherently encoded in the system, and the need for an accurate model of the robot is often not required. Finally, if the CPG controller is implemented in a distributed fashion, e.g., on several microcontrollers, it allows simplified reconfiguration or adaptation of the robot to a missing or a nonfunctional part.

After an historical overview of CPG-based models in the first section of the chapter (Sect. 1), we describe different conceptual models in Sect. 2 and review important methodological considerations in the implementation of a CPG controller for robotic applications in Sect. 3. Finally, in Sect. 4, we review some applications of CPGs in robots, with a strong emphasis on the control of humanoid locomotion.


  1. 1.
    M. Abe, N. Yamada, Modulation of elbow joint stiffness in a vertical plane during cyclic movement at lower or higher frequencies than natural frequency. Exp. Brain Res. 153(3), 394–399 (2003)CrossRefGoogle Scholar
  2. 2.
    M. Ajallooeian, J. van den Kieboom, A. Mukovskiy, M.A. Giese, A.J. Ijspeert, A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Physica D Nonlinear Phenom. 263, 41–56 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Aoi, K. Tsuchiya, Locomotion control of a biped robot using nonlinear oscillators. Auton. Robot. 19(3), 219–232 (2005)CrossRefGoogle Scholar
  4. 4.
    T.G. Brown, The intrinsic factors in the act of progression in the mammal, in Proceedings of the Royal Society of London. Series B, 1911, pp. 308–319CrossRefGoogle Scholar
  5. 5.
    J. Buchli, A.J. Ijspeert, Distributed central pattern generator model for robotics application based on phase sensitivity analysis, in Biologically Inspired Approaches to Advanced Information Technology (Springer, 2004), pp. 333–349Google Scholar
  6. 6.
    J. Buchli, L. Righetti, A.J. Ijspeert, A dynamical systems approach to learning: a frequency-adaptive hopper robot, in Advances in Artificial Life (Springer, 2005), pp. 210–220Google Scholar
  7. 7.
    V. Dietz, Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125(12), 2626–2634 (2002)CrossRefGoogle Scholar
  8. 8.
    M.R. Dimitrijevic, Y. Gerasimenko, M.M. Pinter, Evidence for a spinal central pattern generator in humansa. Ann. N. Y. Acad. Sci. 860(1):360–376 (1998)CrossRefGoogle Scholar
  9. 9.
    J. Duysens, H.W.A.A. Van de Crommert, Neural control of locomotion; Part 1: the central pattern generator from cats to humans. Gait Posture 7(2), 131–141 (1998)CrossRefGoogle Scholar
  10. 10.
    G. Endo, J. Morimoto, J. Nakanishi, G. Cheng, An empirical exploration of a neural oscillator for biped locomotion control, in International Conference on Robotics and Automation (IEEE, 2004)Google Scholar
  11. 11.
    A. Gams, T. Petric, A. Ude, L. Žlajpah, Performing Periodic Tasks: On-line Learning, Adaptation and Synchronization with External Signals. (INTECH Open Access Publisher, London, 2012)Google Scholar
  12. 12.
    W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge university press, Cambridge/New York, 2002)Google Scholar
  13. 13.
    H. Geyer, H. Herr, A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Grillner, Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696), 143–149 (1985)CrossRefGoogle Scholar
  15. 15.
    S. Grillner, Control of locomotion in bipeds, tetrapods, and fish, in Handbook of Physiology, Sect 1: The Nervous System Vol II: Motor Control, ed. by V.B. Brooks (Waverly Press, Maryland, 2011), pp. 1179–1236Google Scholar
  16. 16.
    S. Grillner, A.P. Georgopoulos, L.M. Jordan, P.S.G. Stein, S. Grillner, Neurons, Networks, and Motor Behavior (MIT Press, Cambridge, 1997)Google Scholar
  17. 17.
    V.S. Gurfinkel, M.L. Shik, The control of posture and locomotion, in Motor Control (Springer, Boston, 1974), pp. 217–234CrossRefGoogle Scholar
  18. 18.
    M.K. Habib, K. Watanabe, K. Izumi, Biped locomotion using CPG with sensory interaction, in International Symposium on Industrial Electronics (IEEE, 2009)Google Scholar
  19. 19.
    K. Hase, K. Miyashita, S. Ok, Y. Arakawa, Human gait simulation with a neuromusculoskeletal model and evolutionary computation. J. Vis. Comput. Animat. 14(2), 73–92 (2003)CrossRefGoogle Scholar
  20. 20.
    A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)CrossRefGoogle Scholar
  21. 21.
    S.L. Hooper, Central pattern generators, in Encyclopedia of Life Sciences (John Wiley, Chichester, 2001)Google Scholar
  22. 22.
    A.J. Ijspeert, A. Crespi, D. Ryczko, J.-M. Cabelguen, From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)CrossRefGoogle Scholar
  23. 23.
    A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning attractor landscapes for learning motor primitives. Technical report, 2002Google Scholar
  24. 24.
    A.J. Ijspeert, J. Nakanishi, S. Schaal, Movement imitation with nonlinear dynamical systems in humanoid robots, in International Conference on Robotics and Automation (IEEE, 2002), pp. 1398–1403Google Scholar
  25. 25.
    E.M. Izhikevich et al. Simple model of spiking neurons. Trans. Neural Netw. 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    E.M. Izhikevich, R. FitzHugh, Fitzhugh-nagumo model. Scholarpedia 1(9), 1349 (2006)CrossRefGoogle Scholar
  27. 27.
    Y. Kim, Y. Tagawa, G. Obinata, K. Hase, Robust control of CPG-based 3D neuromusculoskeletal walking model. Biol. Cybern. 105(3–4), 269–282 (2011)CrossRefGoogle Scholar
  28. 28.
    H. Kitajima, K. Tsumoto, T. Yoshinaga, K. Aihara, H. Kawakami, Bifurcations in Morris–Lecar neuron model. Neurocomputing 69(4), 293–316 (2006)CrossRefGoogle Scholar
  29. 29.
    G.L. Liu, M.K. Habib, K. Watanabe, K. Izumi, Central pattern generators based on Matsuoka oscillators for the locomotion of biped robots. Artif. Life Robot. 12(1–2), 264–269 (2008)CrossRefGoogle Scholar
  30. 30.
    A. Lundberg, Half-centres revisited, in Regulatory Functions of the CNS. Motion and Organization Principles (Pergamon press, Budapest, 1981), pp. 155–167CrossRefGoogle Scholar
  31. 31.
    T. Matsubara, J. Morimoto, J. Nakanishi, M.-a. Sato, K. Doya, Learning CPG-based biped locomotion with a policy gradient method. Robot. Auton. Syst. 54(11), 911–920 (2006)CrossRefGoogle Scholar
  32. 32.
    K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52(6), 367–376 (1985)MathSciNetCrossRefGoogle Scholar
  33. 33.
    D.A. McCrea, I.A. Rybak, Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57(1), 134–146 (2008)CrossRefGoogle Scholar
  34. 34.
    S. Miller, P.D. Scott, The spinal locomotor generator. Exp. Brain Res. 30(2–3), 387–403 (1977)Google Scholar
  35. 35.
    S. Miyakoshi, G. Taga, Y. Kuniyoshi, A. Nagakubo, Three dimensional bipedal stepping motion using neural oscillators-towards humanoid motion in the real world, in International Conference on Intelligent Robots and Systems (IEEE, 1998)Google Scholar
  36. 36.
    J. Morimoto, G. Endo, J. Nakanishi, G. Cheng, A biologically inspired biped locomotion strategy for humanoid robots: modulation of sinusoidal patterns by a coupled oscillator model. Trans. Robot. 24(1), 185–190 (2008)CrossRefGoogle Scholar
  37. 37.
    J. Morimoto, G. Endo, J. Nakanishi, S.-H. Hyon, G. Cheng, D. Bentivegna, C.G. Atkeso, Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking, in International Conference on Robotics and Automation (IEEE, 2006)Google Scholar
  38. 38.
    Y. Nakamura, T. Mori, M.-a. Sato, S. Ishii, Reinforcement learning for a biped robot based on a CPG-actor-critic method. Neural Netw. 20(6), 723–735 (2007)CrossRefGoogle Scholar
  39. 39.
    J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, M. Kawato, Learning from demonstration and adaptation of biped locomotion. Robot. Auton. Syst. 47(2), 79–91 (2004)CrossRefGoogle Scholar
  40. 40.
    J. Nassour, P. Hénaff, F. Benouezdou, G. Cheng, Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biol. Cybern. 108(3), 291–303 (2014)CrossRefGoogle Scholar
  41. 41.
    N. Ogihara, N. Yamazaki, Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol. Cybern. 84(1), 1–11 (2001)CrossRefGoogle Scholar
  42. 42.
    J. Or, A hybrid CPG–ZMP control system for stable walking of a simulated flexible spine humanoid robot. Neural Netw. 23(3), 452–460 (2010)CrossRefGoogle Scholar
  43. 43.
    C. Paul, Bilateral decoupling in the neural control of biped locomotion, in Proceedings of the Second International Symposium on Adaptive Motion of Animals and Machines, Kyoto, 2003Google Scholar
  44. 44.
    T. Petric, A. Gams, A.J. Ijspeert, L. Žlajpah, On-line frequency adaptation and movement imitation for rhythmic robotic tasks. Int. J. Robot. Res. 30(14), 1775–1788 (2011)CrossRefGoogle Scholar
  45. 45.
    T. Petrič, A. Gams, M. Tomšič, L. Žlajpah, Control of rhythmic robotic movements through synchronization with human muscle activity, in International Conference on Robotics and Automation (IEEE, 2011)Google Scholar
  46. 46.
    T. Petric, A. Gams, L. Zlajpah, A. Ude, Online learning of task-specific dynamics for periodic tasks, in International Conference on Intelligent Robots and Systems (IEEE, 2014)Google Scholar
  47. 47.
    J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, G. Pratt, Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001)CrossRefGoogle Scholar
  48. 48.
    T. Reil, P. Husbands, Evolution of central pattern generators for bipedal walking in a real-time physics environment. Trans. Evol. Comput. 6(2), 159–168 (2002)CrossRefGoogle Scholar
  49. 49.
    L. Righetti, J. Buchli, A.J. Ijspeert, From dynamic Hebbian learning for oscillators to adaptive central pattern generators, in International Symposium on Adaptive Motion in Animals and Machines (Verlag ISLE, Ilmenau, 2005)Google Scholar
  50. 50.
    L. Righetti, A. Jan Ijspeert, Programmable central pattern generators: an application to biped locomotion control, in International Conference on Robotics and Automation (IEEE, 2006)Google Scholar
  51. 51.
    G.A. Rummery, M. Niranjan, On-line Q-learning using connectionist systems. Department of Engineering, University of Cambridge, 1994Google Scholar
  52. 52.
    I.A. Rybak, N.A. Shevtsova, M. Lafreniere-Roula, D.A. McCrea, Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577(2), 617–639 (2006)CrossRefGoogle Scholar
  53. 53.
    C.S. Sherrington, Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Brain Res. Rev. 40(1–2), 28–121 (1910)CrossRefGoogle Scholar
  54. 54.
    M.-a. Sato, Y. Nakamura, S. Ishii, Reinforcement learning for biped locomotion, in International Conference on Artificial Neural Networks (Springer, 2002), pp. 777–782Google Scholar
  55. 55.
    G. Schöner, A dynamic theory of coordination of discrete movement. Biol. Cybern. 63(4), 257–270 (1990)MathSciNetCrossRefGoogle Scholar
  56. 56.
    G. Taga, Y. Miyake, Y. Yamaguchi, H. Shimizu, Generation and coordination of bipedal locomotion through global entrainment, in International Symposium on Autonomous Decentralized Systems (IEEE, 1993)Google Scholar
  57. 57.
    G. Taga, Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D Nonlinear Phenom. 75(1), 190–208 (1994)CrossRefGoogle Scholar
  58. 58.
    G. Taga, A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol. Cybern. 78(1), 9–17 (1998)CrossRefGoogle Scholar
  59. 59.
    G. Taga, Y. Yamaguchi, H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65(3), 147–159 (1991)CrossRefGoogle Scholar
  60. 60.
    N. Van der Noot, A.J. Ijspeert, R. Ronsse, Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model, in International Conference on Robotics and Automation (IEEE, 2015)Google Scholar
  61. 61.
    B.W. Verdaasdonk, H.F.J.M. Koopman, F.C.T. van der Helm, Energy efficient and robust rhythmic limb movement by central pattern generators. Neural Netw. 19(4), 388–400 (2006)CrossRefGoogle Scholar
  62. 62.
    B.W. Verdaasdonk, H.F.J.M. Koopman, F.C.T. van der Helm, Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control. Biol. Cybern. (1), 49–61 (2009)MathSciNetCrossRefGoogle Scholar
  63. 63.
    M. Vukobratovic, B. Borovac, Zero-moment point thirty five years of its life. Int. J. Humanoid Rob. 1(01), 157–173 (2004)Google Scholar
  64. 64.
    T. Wadden, Ö. Ekeberg, A neuro-mechanical model of legged locomotion: single leg control. Biol. Cybern. 79(2), 161–173 (1998)Google Scholar
  65. 65.
    M.M. Williamson, Robot arm control exploiting natural dynamics. PhD thesis, Citeseer, 1999Google Scholar
  66. 66.
    R. Zaier, S. Kanda, Piecewise-linear pattern generator and reflex system for humanoid robots, in International Conference on Robotics and Automation (IEEE, 2007)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Florin Dzeladini
    • 1
  • Nadine Ait-Bouziad
    • 2
  • Auke Ijspeert
    • 1
  1. 1.BioRob, School of Engineering, Institute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Laboratory of Molecular and Chemical Biology of NeurodegenerationÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations