Advertisement

Model Predictive Control

  • Pierre-Brice Wieber
Reference work entry

One of the major difficulties in making a robot walk is keeping its balance. Not considering other important questions such as energy efficiency, keeping the balance of the robot will be the only focus of this chapter: where should the robot place its feet and how should it move its body in order to move safely in a given direction, even in case of strong perturbations?

References

  1. 1.
    Z. Aftab, T. Robert, P.-B. Wieber, Ankle, hip and stepping strategies for humanoid balance recovery with a single model predictive control scheme, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2012)Google Scholar
  2. 2.
    D.J. Agravante, A. Sherikov, P.-B. Wieber, A. Cherubini, A. Kheddar, Walking pattern generators designed for physical collaboration, in Proceedings of the IEEE International Conference on Robotics & Automation (2016)Google Scholar
  3. 3.
    M. Alamir, G. Bornard, Stability of a truncated infinite constrained receding horizon scheme: the general discrete nonlinear case. Automatica 31(9), 1353–1356 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Alamir, N. Marchand, Numerical stabilisation of non-linear systems: exact theory and approximate numerical implementation. Eur. J. Control 5(1), 87–97 (1999)CrossRefGoogle Scholar
  5. 5.
    R.McN. Alexander, Mechanics of bipedal locomotion. Perspect. Exp. Biol. 1, 493–504 (1976)Google Scholar
  6. 6.
    R. McN. Alexander, Simple models of human movement. ASME Appl. Mech. Rev. 48(8), 461–470 (1995)CrossRefGoogle Scholar
  7. 7.
    J.-P. Aubin, Viability Theory (Birkhäuser, Boston, 1991)Google Scholar
  8. 8.
    H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, E. Yoshida, Model preview control in multi-contact motion-application to a humanoid robot, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2014)Google Scholar
  9. 9.
    N. Bohórquez, A. Sherikov, D. Dimitrov, P.-B. Wieber, Safe navigation strategies for a biped robot walking in a crowd, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2016)Google Scholar
  10. 10.
    C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, P.-B. Wieber, A robust linear MPC approach to online generation of 3D biped walking motion, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2015)Google Scholar
  11. 11.
    T. Buschmann, S. Lohmeier, M. Bachmayer, H. Ulbrich, F. Pfeiffer, A collocation method for real-time walking pattern generation, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2007)Google Scholar
  12. 12.
    C.K. Chow, D.H. Jacobson, Studies of human locomotion via optimal programming. Harvard University technical report no. 617 (1970)Google Scholar
  13. 13.
    T. de Boer, Foot placement in robotic bipedal locomotion. Technische Universiteit Delft PhD thesis (2012)Google Scholar
  14. 14.
    R. Deits, R. Tedrake, Footstep planning on uneven terrain with mixed-integer convex optimization, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2014)Google Scholar
  15. 15.
    J. Denk, G. Schmidt, Synthesis of walking primitive databases for biped robots in 3D-environments, in Proceedings of the IEEE International Conference on Robotics & Automation (2003)Google Scholar
  16. 16.
    H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur, M. Diehl, Online walking gait generation with adaptive foot positioning through linear model predictive control, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2008)Google Scholar
  17. 17.
    D. Dimitrov, A. Paolillo, P.-B. Wieber, Walking motion generation with online foot position adaptation based on 1- and -norm penalty formulations, in Proceedings of the IEEE International Conference on Robotics & Automation (2011)Google Scholar
  18. 18.
    J. Englsberger, C. Ott, M.A. Roa, A. Albu-Schäffer, G. Hirzinger, Bipedal walking control based on Capture Point dynamics, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2011)Google Scholar
  19. 19.
    S. Feng, X. Xinjilefu, W. Huang, C.G. Atkeson, 3D walking based on online optimization, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2013)Google Scholar
  20. 20.
    S. Feng, X. Xinjilefu, C.G. Atkeson, J. Kim, Robust dynamic walking using online foot step optimization, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2016)Google Scholar
  21. 21.
    R.J. Full, D.E. Koditschek, Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325–3332 (1999)Google Scholar
  22. 22.
    D. Gouaillier, C. Collette, C. Kilner, Omni-directional closed-loop walk for NAO, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2010)Google Scholar
  23. 23.
    B. Henze, C. Ott, M.A. Roa, Posture and balance control for humanoid robots in multi-contact scenarios based on model predictive control, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2014)Google Scholar
  24. 24.
    A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl, Online walking motion generation with automatic foot step placement. Adv. Robot. 24(5–6), 719–737 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Herdt, N. Perrin, P.-B. Wieber, LMPC based online generation of more efficient walking motions, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2012)Google Scholar
  26. 26.
    H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, M. Morisawa, A universal stability criterion of the foot contact of legged robots – adios ZMP, in Proceedings of the IEEE International Conference on Robotics & Automation (2006), pp. 1976–1983Google Scholar
  27. 27.
    A.L. Hof, M.G.J. Gazendam, W.E. Sinke, The condition for dynamic stability. J. Biomech. 38, 1–8 (2005)CrossRefGoogle Scholar
  28. 28.
    Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie, Planning walking patterns for a biped robot. IEEE Trans. Robot. Autom. 17(3), 280–289 (2001)Google Scholar
  29. 29.
    A. Ibanez, P. Bidaud, V. Padois, Unified preview control for humanoid postural stability and upper-limb interaction adaptation, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2012)Google Scholar
  30. 30.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of Zero Moment Point, in Proceedings of the IEEE International Conference on Robotics & Automation, Sept 2003, pp. 1620–1626Google Scholar
  31. 31.
    J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, N. Mansard, Whole-body model-predictive control applied to the HRP-2 humanoid, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2015)Google Scholar
  32. 32.
    T. Koolen, T. de Boer, J. Rebula, A. Goswami, J. Pratt, Capturability-based analysis and control of legged locomotion, Part 1: theory and application to three simple gait models. Int. J. Robot. Res. 31(9), 1094–1113 (2012)CrossRefGoogle Scholar
  33. 33.
    M. Krause, J. Englsberger, P.-B. Wieber, C. Ott, Stabilization of the Capture Point dynamics for bipedal walking based on model predictive control, in Proceedings of the IFAC Symposium on Robot Control (2012)Google Scholar
  34. 34.
    S. Kuindersma, F. Permenter, R. Tedrake, An efficiently solvable quadratic program for stabilizing dynamic locomotion, in Proceedings of the IEEE International Conference on Robotics & Automation (2014)Google Scholar
  35. 35.
    J. Lafaye, D. Gouaillier, P.-B. Wieber, Linear model predictive control of the locomotion of pepper, a humanoid robot with omnidirectional wheels, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2014)Google Scholar
  36. 36.
    H. Lim, Y. Kaneshima, A. Takanishi, Online walking pattern generation for biped humanoid robot with trunk, in Proceedings of the IEEE International Conference on Robotics & Automation (2002)Google Scholar
  37. 37.
    D.Q. Mayne, Model predictive control: recent developments and future promise. Automatica 50, 2967–2986 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained model predictive control: stability and optimality. Automatica 26(6), 789–814 (2000)MathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Morisawa, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K. Fujiwara, S. Nakaoka, H. Hirukawa, A biped pattern generation allowing immediate modification of foot placement in real-time, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2006)Google Scholar
  40. 40.
    K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, J. Yamaguchi, Integrated motion control for walking, jumping and running on a small bipedal entertainment robot, in Proceedings of the IEEE International Conference on Robotics & Automation (2004)Google Scholar
  41. 41.
    K. Nagasaka, T. Fukushima, H. Shimomura, Whole-body control of a humanoid robot based on generalized inverse dynamics and multi-contact stabilizer that can take account of contact constraints, in Proceedings of the 17th Japanese Robotics Symposium (2012)Google Scholar
  42. 42.
    M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, P. Souères, A reactive walking pattern generator based on nonlinear model predictive control. IEEE Robot. Autom. Lett. 2(1), 10–17 (2017)CrossRefGoogle Scholar
  43. 43.
    K. Nishiwaki, S. Kagami, Online walking control systems for humanoids with short cycle pattern generation. Int. J. Robot. Res. 28(6), 729–742 (2009)CrossRefGoogle Scholar
  44. 44.
    K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue, Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2002)Google Scholar
  45. 45.
    J. Park, Y. Youm, General ZMP preview control for bipedal walking, in Proceedings of the IEEE International Conference on Robotics & Automation (2007)Google Scholar
  46. 46.
    B. Ponton, A. Herzog, S. Schaal, L. Righetti, A convex model of humanoid momentum dynamics for multi-contact motion generation, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2016)Google Scholar
  47. 47.
    J. Pratt, R. Tedrake, Velocity based stability margins for fast bipedal walking, in Proceedings of the Ruperto Carola Symposium on Fast Motion in Biomechanics and Robotics (2005)Google Scholar
  48. 48.
    J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2006)Google Scholar
  49. 49.
    T. Saida, Y. Yokokoji, T. Yoshikawa, FSW (Feasible Solution of Wrench) for multi-legged robots, in Proceedings of the IEEE International Conference on Robotics & Automation (2003)Google Scholar
  50. 50.
    D. Serra, C. Brasseur, A. Sherikov, D. Dimitrov, P.-B. Wieber, A Newton method with always feasible iterates for nonlinear model predictive control of walking in a multi-contact situation, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2016)Google Scholar
  51. 51.
    A. Sherikov, D. Dimitrov, P.-B. Wieber, Whole body motion controller with long-term balance constraints, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2014)Google Scholar
  52. 52.
    A. Sherikov, D. Dimitrov, P.-B. Wieber, Balancing a humanoid robot with a prioritized contact force distribution, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2015)Google Scholar
  53. 53.
    B.J. Stephens, C.G. Atkeson, Push recovery by stepping for humanoid robots with force controlled joints, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2010)Google Scholar
  54. 54.
    R. Tajima, D. Honda, K. Suga, Fast running experiments involving a humanoid robot, in Proceedings of the IEEE International Conference on Robotics & Automation (2009)Google Scholar
  55. 55.
    A. Takanishi, M. Tochizawa, H. Karaki, I. Kato, Dynamic biped walking stabilized with optimal trunk and waist motion, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (1989)Google Scholar
  56. 56.
    T. Takenaka, T. Matsumoto, T. Yoshiike, Real time motion generation and control for biped robot -1st report: walking gait pattern generation, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2009)Google Scholar
  57. 57.
    J. Urata, K. Nishiwaki, Y. Nakanishi, K. Okada, S. Kagami, M. Inaba, Online decision of foot placement using singular LQ preview regulation, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2011)Google Scholar
  58. 58.
    M. van de Panne, From footprints to animation. Comput. Graph. 16(4), 211–223 (1997)Google Scholar
  59. 59.
    M.K. Vukobratović, Contribution to the study of anthropomorphic systems. Kybernetika 8(5), 404–418 (1972)Google Scholar
  60. 60.
    P.-B. Wieber, Constrained dynamics and parametrized control in biped walking, in Proceedings of the International Symposium on Mathematical Theory of Networks and Systems (2000)Google Scholar
  61. 61.
    P.-B. Wieber, On the stability of walking systems, in Proceedings of the International Workshop on Humanoids and Human Friendly Robots (2002)Google Scholar
  62. 62.
    P.-B. Wieber, Holonomy and nonholonomy in the dynamics of articulated motion, in Proceedings of the Ruperto Carola Symposium on Fast Motion in Biomechanics and Robotics (2005)Google Scholar
  63. 63.
    P.-B. Wieber, Trajectory free linear model predictive control for stable walking in the presence of strong perturbations, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (2006)Google Scholar
  64. 64.
    P.-B. Wieber, Viability and predictive control for safe locomotion, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems (2008)Google Scholar
  65. 65.
    P.-B. Wieber, C. Chevallereau, Online adaptation of reference trajectories for the control of walking systems. Robot. Auton. Syst. 54(7), 559–566 (2006)CrossRefGoogle Scholar
  66. 66.
    P.V. Zaytsev, Using controllability of simple models to generate maximally robust walking-robot controllers. Cornell University PhD thesis (2015)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Grenoble – Rhône-Alpes Research CentreINRIAMontbonnot-Saint-MartinFrance

Personalised recommendations