Advertisement

Linear Inverted Pendulum-Based Gait

  • Shuuji Kajita
Reference work entry

Abstract

The linear inverted pendulum is a model that gives a simple dynamics of a biped walking robot. We overview the pioneering works of biped robot modeling and control and then introduce a method to derive linear dynamics of a 2D biped robot which walks on flat ground. This can be expanded to walk on uneven ground in three dimensions, and we establish the 3D linear inverted pendulum mode (3D-LIPM). We discuss its mathematical nature and then explain an example biped gait generation based on the 3D-LIPM.

References

  1. 1.
    J. Furusho, A. Sano, Sensor-based control of a nine-link biped. Int. J. Robot. Res. 9(2), 83–98 (1990)CrossRefGoogle Scholar
  2. 2.
    F. Gubina, H. Hemami, R.B. McGhee, On the dynamic stability of biped locomotion. IEEE Trans. Biomed. Eng. BME 21(2), 102–108 (1974)CrossRefGoogle Scholar
  3. 3.
    J.I. Hall, D.C. Witt, The development of an automatically-stabilized powered walking device, in Proceedings of Institution of Mechanical Engineers Conference on Human Locomotor Engineering. (1971)Google Scholar
  4. 4.
    K. Hara, R. Yokogawa, K. Sadao, Dynamic control of biped locomotion robot for disturbance on lateral plane (in Japanese), in Proceedings of the Japan Society of Mechanical Engineers 72nd Kansai meeting, 1998, p. 10–37–10–38Google Scholar
  5. 5.
    A.L. Hof, The extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci. 27, 112–125 (2008)CrossRefGoogle Scholar
  6. 6.
    S. Kajita, K.Tani, Study of dynamic walk control of a biped robot on rugged terrain – derivation and application of the linear inverted pendulum mode. J. Rob. Mechatronics 5(6), 516–523 (1993)CrossRefGoogle Scholar
  7. 7.
    S. Kajita, K. Tani, Experimental study of biped dynamic walking. IEEE Control. Syst. 16(1), 13–19 (1996)Google Scholar
  8. 8.
    S. Kajita, A. Kobayashi, T. Yamaura, Dynamic walking control of a biped robot along a potential energy conserving orbit. 8(4), 431–438 (1992)Google Scholar
  9. 9.
    S. Kajita, O. Matsumoto, M. Saigo, Real-time 3D walking pattern generation for a biped robot with telescopic legs, in Proceedings of the IEEE International Conference on Robotics and Automation, 2001, pp. 2299–2306Google Scholar
  10. 10.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirukawa, The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, p. 239–246Google Scholar
  11. 11.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, H. Hirukawa, A realtime pattern generator for biped walking, in Proceedings of the IEEE International Conference on Robotics and Automation, 2002, pp. 31–37Google Scholar
  12. 12.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of Zero-moment point, in Proceedings of the IEEE International Conference on Robotics and Automation, 2003, pp. 1620–1626Google Scholar
  13. 13.
    S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, K. Yokoi, Biped walking stabilization based on linear inverted pendulum tracking, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2010), 2010, pp. 4489–4496Google Scholar
  14. 14.
    S. Kajita, K. Harada, K. Yokoi, H. Hirukawa, Introduction to Humanoid Robotics (Springer, Berlin, 2014)Google Scholar
  15. 15.
    F. Miyazaki, S. Arimoto, A control theoretic study on dynamical biped locomotion. J. Dyn. Syst. Meas. Control. 102, 233–239 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids2006), 2006, pp. 200–207Google Scholar
  17. 17.
    M.H. Raibert, Legged Robots that Balance (MIT Press, Cambridge, 1986)CrossRefGoogle Scholar
  18. 18.
    T. Takenaka, T. Matsumoto, T. Yoshiike, Real time motion generation and control for biped robot, 1st report: walking gait pattern generation, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 1084–1091Google Scholar
  19. 19.
    D.C. Witt, A feasibility study on powered lower-limb prostheses, in Proceedings of Symposium on the Basic Problems of Prehension, Movement and Control of Artificial Limbs, 1968, pp. 1–8Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Humanoid Research Group, Intelligent Systems Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations