Advertisement

The Karlsruhe ARMAR Humanoid Robot Family

  • Tamim Asfour
  • Rüdiger Dillmann
  • Nikolaus Vahrenkamp
  • Martin Do
  • Mirko Wächter
  • Christian Mandery
  • Peter Kaiser
  • Manfred Kröhnert
  • Markus Grotz
Reference work entry

Abstract

We present the development and evolution of the ARMAR humanoid robots, which have been developed to perform grasping and manipulation tasks in made-for-human environments, to learn actions and task knowledge from human observation and sensorimotor experience, and to interact with humans in a natural way. We describe the mechatronics of the ARMAR robots, their grasping and learning capabilities, and the underlying architecture.

Notes

Acknowledgements

The research leading to the development of the ARMAR humanoid robots has received funding from the German Research Foundation (DFG: Deutsche Forschungsgemeinschaft) within the German Humanoid Research project SFB 588 and the European Union within the EU Cognitive Systems and Robotic projects PACO-PLUS, Xperience, GRASP, WALK-MAN, and KoroiBot as well as from the Karlsruhe Institute of Technology. We would like to thank all members of the H2T lab and all students who contributed to this research in its different phases.

References

  1. 1.
    A. Albers, J. Ottnad, C. Sander, Development of a new wrist for the next generation of the humanoid robot ARMAR, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2008, pp. 46–53Google Scholar
  2. 2.
    R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F. Rehnmark, Robonaut: NASA’s space humanoid. IEEE Intell. Syst. Appl. 15(4), 57–63 (2000). doi: 10.1109/5254.867913CrossRefGoogle Scholar
  3. 3.
    T. Asfour, Sensormotorische Koordination für die Handlungsausführung eines humanoiden Roboters (in German), Ph.D. thesis, Universität Karlsruhe (TH), Karlsruhe, 2003Google Scholar
  4. 4.
    T. Asfour, P. Azad, F. Gyarfas, R. Dillmann, Imitation learning of dual-arm manipulation tasks in humanoid robots. Int. J. Humanoid Robot. 5(2), 183–202 (2008)CrossRefGoogle Scholar
  5. 5.
    T. Asfour, K. Berns, R. Dillmann, The humanoid robot ARMAR: design and control, in The 1st IEEE-RAS International Conference on Humanoid Robots, 2000, pp. 7–8Google Scholar
  6. 6.
    T. Asfour, D.N. Ly, K. Regenstein, R. Dillmann, Coordinated task execution for humanoid robots, in The International Symposium on Experimental Robots, 2004, pp. 259–267Google Scholar
  7. 7.
    T. Asfour, K. Regenstein, P. Azad, J. Schröder, N. Vahrenkamp, R. Dillmann, ARMAR-III: an integrated humanoid platform for sensory-motor control, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), Genova, 2006, pp. 169–175Google Scholar
  8. 8.
    T. Asfour, J. Schill, H. Peters, C. Klas, J. Bücker, C. Sander, S. Schulz, A. Kargov, T. Werner, V. Bartenbach, ARMAR-4: a 63 DOF torque controlled humanoid robot, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2013, pp. 390–396Google Scholar
  9. 9.
    T. Asfour, K. Welke, P. Azad, A. Ude, R. Dillmann, The Karlsruhe humanoid head, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), Daejeon, 2008, pp. 447–453Google Scholar
  10. 10.
    C. Atkeson, J. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaul, T. Shibata, G. Tevatia, A. Ude, S. Vijayakumar, E. Kawato, M. Kawato, Using humanoid robots to study human behavior. IEEE Intell. Syst. Appl. 15(4), 46–56 (2000). doi: 10.1109/5254.867912CrossRefGoogle Scholar
  11. 11.
    P. Azad, T. Asfour, R. Dillmann, Toward an unified representation for imitation of human motion on humanoids, in IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 2558–2563Google Scholar
  12. 12.
    P. Azad, T. Asfour, R. Dillmann, Robust real-time stereo-based markerless human motion capture, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), Daejeon, 2008, pp. 700–707Google Scholar
  13. 13.
    P. Azad, T. Asfour, R. Dillmann, Accurate shape-based 6-DOF pose estimation of single-colored objects, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2009, pp. 2690–2695Google Scholar
  14. 14.
    P. Azad, T. Asfour, R. Dillmann, Combining Harris interest points and the sift descriptor for fast scale-invariant object recognition, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2009, pp. 4275–4280Google Scholar
  15. 15.
    J. Beil, G. Perner, T. Asfour, Design and control of a lower limb exoskeleton (KIT-EXO-1), in International Conference on Rehabilitation Robotics (ICORR), 2015, pp. 119–124Google Scholar
  16. 16.
    A. Bierbaum, M. Rambow, T. Asfour, R. Dillmann, Grasp affordances from multi-fingered tactile exploration using dynamic potential fields, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2009, pp. 168–174Google Scholar
  17. 17.
    A. Billard, S. Calinon, R. Dillmann, S. Schaal, Survey: Robot Programming by Demonstration (MIT Press, 2008)Google Scholar
  18. 18.
    C. Böge, N. Vahrenkamp, T. Asfour, R. Dillmann, Visual servoing for single and dual arm manipulation tasks in humanoid robots. At – Automatisierungstechnik, De Gruyter Oldenbourg 60(5), 309–317 (2012)Google Scholar
  19. 19.
    G. Cheng, S. Hyon, J. Morimoto, A. Ude, G. Colvin, W. Scroggin, S. Jacobsen, CB: a humanoid research platform for exploring neuroscience, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2006, pp. 182–187. doi:  https://doi.org/10.1109/ICHR.2006.321382
  20. 20.
    R. Dillmann, Teaching and learning of robot tasks via observation of human performance. Robot. Auton. Syst. 47(2–3), 109–116 (2004)CrossRefGoogle Scholar
  21. 21.
    R. Dillmann, T. Asfour, Collaborative research center on humanoid robots (sfb 588). KI – Zeitschrift Künstliche Intelligenz 4, 26–28 (2008)Google Scholar
  22. 22.
    R. Dillmann, R. Becher, P. Steinhaus, ARMAR II – a learning and cooperative multimodal humanoid robot system. Int. J. Humanoid Robot. 1(1), 143–155 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Do, T. Asfour, R. Dillmann, Particle filter-based fingertip tracking with circular hough transform features, in IAPR Machine Vision Applications, 2011Google Scholar
  24. 24.
    M. Do, P. Azad, T. Asfour, R. Dillmann, Imitation of human motion on a humanoid robot using nonlinear optimization, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2008, pp. 545–552Google Scholar
  25. 25.
    M. Do, J. Schill, J. Ernesti, T. Asfour, Learn to wipe: a case study of structural bootstrapping from sensorimotor experience, in IEEE International Conference on Robotics and Automation (ICRA), 2014Google Scholar
  26. 26.
    J. Ernesti, L. Righetti, M. Do, T. Asfour, S. Schaal, Encoding of periodic and their transient motions by a single dynamic movement primitive, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), Osaka, 2012, pp. 57–64Google Scholar
  27. 27.
    I. Gaiser, S. Schulz, H. Breitwieser, G. Bretthauer, Enhanced Flexible Fluidic actuators for biologically inspired lightweight robots with inherent compliance, in IEEE International Conference on Robotics and Biomimetics (ROBIO), 2010, pp. 1423–1428Google Scholar
  28. 28.
    A. Gams, M. Do, A. Ude, T. Asfour, R. Dillmann, On-line periodic movement and force-profile learning for adaptation to new surfaces, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), Nashville, 2010Google Scholar
  29. 29.
    J.J. Gibson, The ecological approach to visual perception, Houghton Mifflin (1979)Google Scholar
  30. 30.
    A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning attractor landscapes for learning motor primitives, in Conference on Neural Information Processing Systems, 2002, pp. 1523–1530Google Scholar
  31. 31.
    H. Iwata, S. Sugano, Design of human symbiotic robot TWENDY-ONE, in IEEE International Conference on Robotics and Automation (ICRA), 2009, pp. 580–586. doi:  https://doi.org/10.1109/ROBOT.2009.5152702
  32. 32.
    P. Kaiser, E.E. Aksoy, M. Grotz, T. Asfour, Towards a hierarchy of whole-body loco-manipulation affordances, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2839–2846Google Scholar
  33. 33.
    P. Kaiser, D. Gonzalez-Aguirre, F. Schültje, J. Borràs, N. Vahrenkamp, T. Asfour, Extracting whole-body affordances from multimodal exploration, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2014, pp. 1036–1043Google Scholar
  34. 34.
    P. Kaiser, D. Kanoulas, M. Grotz, L. Muratore, A. Rocchi, E.M. Hoffman, N.G. Tsagarakis, T. Asfour, An affordance-based pilot interface for high-level control of humanoid robots in supervised autonomy, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2016Google Scholar
  35. 35.
    P. Kaiser, N. Vahrenkamp, F. Schültje, J. Borràs, T. Asfour, Extraction of whole-body affordances for loco-manipulation tasks. Int. J. Humanoid Robot. (IJHR), 12(3), pp. 15–31, (2015)CrossRefGoogle Scholar
  36. 36.
    K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi, Humanoid robot HRP-2, in IEEE International Conference on Robotics and Automation (ICRA), vol. 2, 2004, pp. 1083–1090. doi:  https://doi.org/10.1109/ROBOT.2004.1307969
  37. 37.
    K. Kaneko, F. Kanehiro, M. Morisawa, K. Akachi, G. Miyamori, A. Hayashi, N. Kanehira, Humanoid robot HRP-4 – humanoid robotics platform with lightweight and slim body, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 4400–4407. doi:  https://doi.org/10.1109/IROS.2011.6094465
  38. 38.
    K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, S. Kajita, Cybernetic human HRP-4C, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2009, pp. 7–14. doi:  https://doi.org/10.1109/ICHR.2009.5379537
  39. 39.
    A. Kasper, Z. Xue, R. Dillmann, The KIT object models database: an object model database for object recognition, localization and manipulation in service robotics. Int. J. Robot. Res. 31(8), 927–934 (2012)CrossRefGoogle Scholar
  40. 40.
    O. Kerpa, K. Weiss, H. Worn, Development of a flexible tactile sensor system for a humanoid robot, in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 1, 2003, pp. 1–6Google Scholar
  41. 41.
    O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, H. Stuart, S. Wang, M. Cutkosky, A. Edsinger, P. Mullins, M. Barham, C.R. Voolstra, K.N. Salama, M. L’Hour, V. Creuze, Ocean one: a robotic avatar for oceanic discovery. IEEE Robot. Autom. Mag. 23(4), 20–29 (2016). doi:  https://doi.org/10.1109/MRA.2016.2613281CrossRefGoogle Scholar
  42. 42.
    N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter, A. Ude, T. Asfour, D. Kraft, D. Omrcen, A. Agostini, R. Dillmann, Object-action complexes: grounded abstractions of sensorimotor processes. Robot. Auton. Syst. 59, 740–757 (2011)CrossRefGoogle Scholar
  43. 43.
    Y. Kuniyoshi, M. Inaba, H. Inoue, Learning by watching: extracting reusable task knowledge from visual observation of human performance. IEEE Trans. Robot. Autom. 10, 799–822 (1994)CrossRefGoogle Scholar
  44. 44.
    J. Lee, J.Y. Kim, I.W. Park, B.K. Cho, M.S. Kim, I. Kim, J.H. Oh, Development of a humanoid robot platform HUBO FX-1, in SICE-ICASE, 2006. International Joint Conference, 2006, pp. 1190–1194. doi:  https://doi.org/10.1109/SICE.2006.315364
  45. 45.
    S. Lohmeier, T. Buschmann, H. Ulbrich, Humanoid robot LOLA, in IEEE International Conference on Robotics and Automation (ICRA), 2009, pp. 775–780. doi:  https://doi.org/10.1109/ROBOT.2009.5152578
  46. 46.
    C. Mandery, J. Borràs, M. Jöchner, T. Asfour, Analyzing whole-body pose transitions in multi-contact motions, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2015, pp. 1020–1027Google Scholar
  47. 47.
    C. Mandery, O. Terlemez, M. Do, N. Vahrenkamp, T. Asfour, The KIT whole-body human motion database, in International Conference on Advanced Robotics (ICAR), 2015, pp. 329–336Google Scholar
  48. 48.
    C. Mandery, O. Terlemez, M. Do, N. Vahrenkamp, T. Asfour, Unifying representations and large-scale whole-body motion databases for studying human motion. IEEE Trans. Robot. 32(4), 796–809 (2016)CrossRefGoogle Scholar
  49. 49.
    G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori, The iCub humanoid robot: an open platform for research in embodied cognition, in Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems (ACM, 2008), pp. 50–56Google Scholar
  50. 50.
    Y. Ogura, H. Aikawa, K. Shimomura, A. Morishima, H.O. Lim, A. Takanishi, Development of a new humanoid robot WABIAN-2, in IEEE International Conference on Robotics and Automation (ICRA), 2006, pp. 76–81. doi:  https://doi.org/10.1109/ROBOT.2006.1641164
  51. 51.
    C. Ott, O. Eiberger, J. Englsberger, M.A. Roa, A. Albu-Schäffer, Hardware and control concept for an experimental bipedal robot with joint torque sensors. J. Robot. Soc. Jpn. 30(4), 378–382 (2012)CrossRefGoogle Scholar
  52. 52.
    E. Ovchinnikova, M. Wächter, V. Wittenbeck, T. Asfour, Multi-purpose natural language understanding linked to sensorimotor experience in humanoid robots, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2015, pp. 365–372Google Scholar
  53. 53.
    P. Pastor, H. Hoffmann, T. Asfour, S. Schaal, Learning and generalization of motor skills by learning from demonstration, in IEEE International Conference on Robotics and Automation (ICRA), 2009Google Scholar
  54. 54.
    M. Przybylski, T. Asfour, R. Dillmann, Planning grasps for robotic hands using a novel object representation based on the medial axis transform, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, pp. 1781–1788Google Scholar
  55. 55.
    M. Przybylski, M. Wächter, T. Asfour, R. Dillmann, A skeleton-based approach to grasp known objects with a humanoid robot, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2012, pp. 376–383Google Scholar
  56. 56.
    S. Rader, L. Kaul, H. Fischbach, N. Vahrenkamp, T. Asfour, Design of a high-performance humanoid dual arm system with inner shoulder joints, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), Cancún, 2016, pp. 523–529Google Scholar
  57. 57.
    Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura, The intelligent ASIMO: system overview and integration, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, 2002, pp. 2478–2483. doi:  https://doi.org/10.1109/IRDS.2002.1041641
  58. 58.
    D. Schiebener, J. Morimoto, T. Asfour, A. Ude, Integrating visual perception and manipulation for autonomous learning of object representations. Adapt. Behav. 21(5), 328–345 (2013)CrossRefGoogle Scholar
  59. 59.
    D. Schiebener, A. Ude, T. Asfour, Physical interaction for segmentation of unknown textured and non-textured rigid objects, in IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014Google Scholar
  60. 60.
    D. Schiebener, N. Vahrenkamp, T. Asfour, Visual collision detection for corrective movements during grasping on a humanoid robot, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2014, pp. 105–111Google Scholar
  61. 61.
    J. Schill, J. Laaksonen, M. Przybylski, V. Kyrki, T. Asfour, R. Dillmann, Learning continuous grasp stability for a humanoid robot hand based on tactile sensing, in IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, 2012, pp. 1901–1906Google Scholar
  62. 62.
    S. Schulz, C. Pylatiuk, G. Bretthauer, A new ultralight anthropomorphic hand, in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 3, 2001, pp. 2437–2441Google Scholar
  63. 63.
    S. Schulz, C. Pylatiuk, A. Kargov, R. Oberle, G. Bretthauer, Progress in the development of anthropomorphic fluidic hands for a humanoid robot, in 4th IEEE/RAS International Conference on Humanoid Robots, vol. 2, 2004, pp. 566–575Google Scholar
  64. 64.
    O. Terlemez, S. Ulbrich, C. Mandery, M. Do, N. Vahrenkamp, T. Asfour, Master motor map (MMM) – framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2014, pp. 894–901Google Scholar
  65. 65.
    N.G. Tsagarakis, D.G. Caldwell, F. Negrello, W. Choi, L. Baccelliere, V. Loc, J. Noorden, L. Muratore, A. Margan, A. Cardellino et al., Walk-man: a high-performance humanoid platform for realistic environments. J. Field Robot., 34(7), pp. 1225–1259CrossRefGoogle Scholar
  66. 66.
    S. Ulbrich, V. Ruiz, T. Asfour, C. Torras, R. Dillmann, Rapid learning of humanoid body schemas with kinematic bezier maps, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2009, pp. 431–438Google Scholar
  67. 67.
    N. Vahrenkamp, T. Asfour, Representing the robot’s workspace through constrained manipulability analysis. Auton. Robot. 38(1), 17–30 (2015)CrossRefGoogle Scholar
  68. 68.
    N. Vahrenkamp, T. Asfour, R. Dillmann, Efficient inverse kinematics computation based on reachability analysis. Int. J. Humanoid Robot. 9(4), p. 1250035 (2012)CrossRefGoogle Scholar
  69. 69.
    N. Vahrenkamp, T. Asfour, R. Dillmann, Simultaneous grasp and motion planning. IEEE Robot. Autom. Mag. 19(2), 43–57 (2012)Google Scholar
  70. 70.
    N. Vahrenkamp, T. Asfour, R. Dillmann, Robot placement based on reachability inversion, in IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 1970–1975Google Scholar
  71. 71.
    N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, R. Dillmann, Manipulability analysis, in Humanoids, 2012, pp. 568–573Google Scholar
  72. 72.
    N. Vahrenkamp, D. Muth, P. Kaiser, T. Asfour, IK-Map: an enhanced workspace representation to support inverse kinematics solvers, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2015, pp. 785–790Google Scholar
  73. 73.
    N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, T. Asfour, The robot software framework ArmarX. Inf. Tech. 57(2), 99–111 (2015)Google Scholar
  74. 74.
    N. Vahrenkamp, L. Westkamp, N. Yamanobe, E.E. Aksoy, T. Asfour, Part-based grasp planning for familiar objects, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2016, pp. 919–925Google Scholar
  75. 75.
    N. Vahrenkamp, S. Wieland, P. Azad, D. Gonzalez-Aguirre, T. Asfour, R. Dillmann, Visual servoing for humanoid grasping and manipulation tasks, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2008, pp. 406–412Google Scholar
  76. 76.
    M. Wächter, T. Asfour, Hierarchical segmentation of manipulation actions based on object relations and motion characteristics, in International Conference on Advanced Robotics (ICAR), 2015, pp. 549–556Google Scholar
  77. 77.
    M. Wächter, S. Ottenhaus, M. Kröhnert, N. Vahrenkamp, T. Asfour, The ArmarX statechart concept: graphical programming of robot behaviour. Front. Robot. AI 3, p. 33 (2016)Google Scholar
  78. 78.
    M. Wächter, S. Schulz, T. Asfour, E. Aksoy, F. Wörgötter, R. Dillmann, Action sequence reproduction based on automatic segmentation and object-action complexes, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2013, pp. 189–195Google Scholar
  79. 79.
    K. Welke, D. Schiebener, T. Asfour, R. Dillmann, Gaze selection during manipulation tasks, in IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, 2013Google Scholar
  80. 80.
    S. Wieland, D. Gonzalez-Aguirre, N. Vahrenkamp, T. Asfour, R. Dillmann, Combining force and visual feedback for physical interaction tasks in humanoid robots, in 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2009, pp. 439–446Google Scholar
  81. 81.
    T. Wimböck, C. Borst, A. Albu-Schäffer, C. Ott, C. Schmidt, M. Fuchs, W. Friedl, O. Eiberger, A. Baumann, A. Beyer, G. Hirzinger, DLR’s two-handed humanoid justin: system design, integration, and control. At-Automatisierungstechnik 58(11), 622–628 (2010)Google Scholar
  82. 82.
    F. Wörgötter, C. Geib, M. Tamosiunaite, E.E. Aksoy, J. Piater, H. Xiong, A. Ude, B. Nemec, D. Kraft, N. Krüger, M. Wächter, T. Asfour, Structural bootstrapping – a novel concept for the fast acquisition of action-knowledge. IEEE Trans. Auton. Ment. Dev. 7(2), 140–154 (2015)Google Scholar
  83. 83.
    T. Yoshikawa, Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)Google Scholar
  84. 84.
    M. Zecca, N. Endo, S. Momoki, K. Itoh, A. Takanishi, Design of the humanoid robot KOBIAN: preliminary analysis of facial and whole body emotion expression capabilities, in IEEE/RAS International Conference on Humanoid Robots (Humanoids), 2008, pp. 487–492. doi:  https://doi.org/10.1109/ICHR.2008.4755969
  85. 85.
    R. Zöllner, T. Asfour, R. Dillmann, Programming by demonstration: dual-arm manipulation tasks for humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tamim Asfour
    • 1
  • Rüdiger Dillmann
    • 1
  • Nikolaus Vahrenkamp
    • 1
  • Martin Do
    • 1
  • Mirko Wächter
    • 1
  • Christian Mandery
    • 1
  • Peter Kaiser
    • 1
  • Manfred Kröhnert
    • 1
  • Markus Grotz
    • 1
  1. 1.High Performance Humanoid Technologies, Institute for Anthropomatics and RoboticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations