Advertisement

iCub

  • Lorenzo Natale
  • Chiara Bartolozzi
  • Francesco Nori
  • Giulio Sandini
  • Giorgio Metta
Reference work entry

Abstract

In this chapter we describe the history and evolution of the iCub humanoid platform. We start by describing the first version as it was designed during the RobotCub EU project and illustrate how it evolved to become the platform that is adopted by more than 30 laboratories worldwide. We complete the chapter by illustrating some of the research activities that are currently carried out on the iCub robot, i.e., visual perception, event-driven sensing, and dynamic control. We conclude the chapter with a discussion of the lessons we learned and a preview of the upcoming next release of the robot, iCub 3.0.

Notes

Acknowledgements

The authors would like to acknowledge the support of the European Union, which – since the beginning and through several grants – has contributed to advancing the iCub platform in all its aspects. In particular we would like to explicitly acknowledge fundings from the following projects: European FP7 ICT projects No. 611832 (WALK-MAN), No. 600716 (CoDyCo), No 611909 (Koroibot), No 610967 (TACMAN), No 270273 (Xperience), and No 231467 (eMorph).

We would like also to acknowledge the contribution of all researchers and technicians working in the iCub Facility Department: without their skills and dedication, not much of what described in the chapter would have been possible.

References

  1. 1.
    The honda humanoid robot ASIMO. http://world.honda.com/ASIMO/. Accessed 31 May 2016
  2. 2.
    The project ROMEO. http://projetromeo.com/. Accessed 31 May 2016
  3. 3.
    Simon the robot. http://www.simontherobot.com/. Accessed 31 May 2016
  4. 4.
    T. Abuhashim, L. Natale, Robustness in view-graph slam, in 19th International Conference on Information Fusion, 2016, pp. 942–949Google Scholar
  5. 5.
    H. Akolkar, S. Panzeri, C. Bartolozzi, Spike time based unsupervised learning of receptive fields for event-driven vision, in IEEE International Conference on Robotics and Automation (IEEE, 2015), pp. 4258–4264.  https://doi.org/10.1109/ICRA.2015.7139786
  6. 6.
    R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F. Rehnmark, Robonaut: NASA’s space humanoid. Intell. Syst. Appl. IEEE 15(4), 57–63 (2000). https://doi.org/10.1109/5254.867913CrossRefGoogle Scholar
  7. 7.
    L. Aryananda, J. Weber, MERTZ: a quest for a robust and scalable active vision humanoid head robot, in IEEE-RAS International Conference on Humanoid Robots, vol. 2, 2004, pp. 513–532.  https://doi.org/10.1109/ICHR.2004.1442668
  8. 8.
    T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, N. Vahrenkamp, R. Dillmann, Armar-iii: an integrated humanoid platform for sensory-motor control, in IEEE-RAS International Conference on Humanoid Robots, 2006, pp. 169–175.  https://doi.org/10.1109/ICHR.2006.321380
  9. 9.
    T. Asfour, K. Welke, P. Azad, A. Ude, R. Dillmann, The karlsruhe humanoid head, in IEEE-RAS International Conference on Humanoid Robots, 2008, pp. 447–453.  https://doi.org/10.1109/ICHR.2008.4755993
  10. 10.
    R. Benosman, C. Clercq, X. Lagorce, S.H. Ieng, C. Bartolozzi, Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 407–417 (2014). doi10.1109/TNNLS.2013.2273537CrossRefGoogle Scholar
  11. 11.
    R.A. Brooks, C. Breazeal, M. Marjanović, B. Scassellati, M.M. Williamson, The Cog project: building a humanoid robot, in Computation for Metaphors, Analogy, and Agents (Springer, Berlin/Heidelberg, 1999), pp. 52–87CrossRefGoogle Scholar
  12. 12.
    R. Camoriano, S. Traversaro, L. Rosasco, G. Metta, F. Nori, Incremental semiparametric inverse dynamics learning, in IEEE International Conference on Robotics and Automation, 2016.  https://doi.org/10.1109/ISIC.2014.6967617
  13. 13.
    L.A. Camuas-Mesa, T. Serrano-Gotarredona, B. Linares-Barranco, Event-driven sensing and processing for high-speed robotic vision, in IEEE Biomedical Circuits and Systems Conference (BioCAS), 2014, pp. 516–519.  https://doi.org/10.1109/BioCAS.2014.6981776
  14. 14.
    N. Caporale, Y. Dan, Spike timingdependent plasticity: a Hebbian learning rule. Ann Rev Neurosci 31(1), 25–46 (2008)CrossRefGoogle Scholar
  15. 15.
    C. Ciliberto, S.R. Fanello, L. Natale, G. Metta, A heteroscedastic approach to independent motion detection for actuated visual sensors, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3907–3913.  https://doi.org/10.1109/IROS.2012.6385943
  16. 16.
    C. Ciliberto, S.R. Fanello, M. Santoro, L. Natale, G. Metta, L. Rosasco, On the impact of learning hierarchical representations for visual recognition in robotics, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3759–3764.  https://doi.org/10.1109/IROS.2013.6696893
  17. 17.
    C. Ciliberto, U. Pattacini, L. Natale, F. Nori, G. Metta, Reexamining lucas-kanade method for real-time independent motion detection: application to the iCub humanoid robot, in EEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 4154–4160.  https://doi.org/10.1109/IROS.2011.6094985
  18. 18.
    C. Ciliberto, F. Smeraldi, L. Natale, G. Metta, Online multiple instance learning applied to hand detection in a humanoid robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 1526–1532.  https://doi.org/10.1109/IROS.2011.6095002
  19. 19.
    X. Clady, C. Clercq, S.H. Ieng, F. Houseini, M. Randazzo, L. Natale, C. Bartolozzi, R. Benosman, Asynchronous visual event-based time-to-contact. Front Neurosci 8(9) (2014).  https://doi.org/10.3389/fnins.2014.00009
  20. 20.
    T. Delbruck, M. Lang, Robotic goalie with 3 ms reaction time at 4 using event-based dynamic vision sensor. Front. Neurosci. 7(223) (2013).  https://doi.org/10.3389/fnins.2013.00223
  21. 21.
    A. Edsinger-Gonzales, J. Weber, Domo: a force sensing humanoid robot for manipulation research, in IEEE-RAS International Conference on Humanoid Robots, vol. 1, 2004, pp. 273–291.  https://doi.org/10.1109/ICHR.2004.1442127
  22. 22.
    P.T. Eugster, P.A. Felber, R. Guerraoui, A.M. Kermarrec, The many faces of publish/subscribe. ACM Comput Surv 35(2), 114–131 (2003). https://doi.org/10.1145/857076.857078CrossRefGoogle Scholar
  23. 23.
    S.R. Fanello, C. Ciliberto, L. Natale, G. Metta, Weakly supervised strategies for natural object recognition in robotics, in IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 4223–4229.  https://doi.org/10.1109/ICRA.2013.6631174
  24. 24.
    S.R. Fanello, C. Ciliberto, M. Santoro, L. Natale, G. Metta, L. Rosasco, F. Odone, iCub world: friendly robots help building good vision data-sets, in 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 700–705.  https://doi.org/10.1109/CVPRW.2013.106
  25. 25.
    S.R. Fanello, U. Pattacini, I. Gori, V. Tikhanoff, M. Randazzo, A. Roncone, F. Odone, G. Metta, 3d stereo estimation and fully automated learning of eye-hand coordination in humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 1028–1035.  https://doi.org/10.1109/HUMANOIDS.2014.7041491
  26. 26.
    M. Fumagalli, S. Ivaldi, M. Randazzo, L. Natale, G. Metta, G. Sandini, F. Nori, Force feedback exploiting tactile and proximal force/torque sensing. Auton. Robot. 33(4), 381–398 (2012). https://doi.org/10.1007/s10514-012-9291-2CrossRefGoogle Scholar
  27. 27.
    M. Fumagalli, M. Randazzo, F. Nori, L. Natale, G. Metta, G. Sandini, Exploiting proximal f/t measurements for the icub active compliance, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2010), pp. 1870–1876.  https://doi.org/10.1109/IROS.2010.5651421
  28. 28.
    A. Geiger, M. Roser, R. Urtasun, Efficient large-scale stereo matching, in Computer Vision – ACCV 2010: 10th Asian Conference on Computer Vision, Queenstown, 8–12 Nov 2010, Revised Selected Papers, Part I (Springer, Berlin/Heidelberg, 2011), pp. 25–38. https://doi.org/10.1007/978-3-642-19315-6_3CrossRefGoogle Scholar
  29. 29.
    I. Gori, U. Pattacini, V. Tikhanoff, G. Metta, Ranking the good points: a comprehensive method for humanoid robots to grasp unknown objects, in IEEE International Conference on Advanced Robotics, 2013, pp. 1–7.  https://doi.org/10.1109/ICAR.2013.6766495
  30. 30.
    I. Gori, U. Pattacini, V. Tikhanoff, G. Metta, Three-finger precision grasp on incomplete 3d point clouds, in IEEE International Conference on Robotics and Automation, 2014, pp. 5366–5373.  https://doi.org/10.1109/ICRA.2014.6907648
  31. 31.
    D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade, B. Marnier, J. Serre, B. Maisonnier, Mechatronic design of nao humanoid, in IEEE International Conference on Robotics and Automation, 2009, pp. 769–774.  https://doi.org/10.1109/ROBOT.2009.5152516
  32. 32.
    T. Habra, H. Dallali, A. Cardellino, L. Natale, N. Tsagarakis, P. Fisette, R. Ronsse, Robotran-YARP interface: a framework for real-time controller developments based on multibody dynamics simulations, in Multibody Dynamics: Computational Methods and Applications (Springer, Cham, 2016), pp. 147–164. https://doi.org/10.1007/978-3-319-30614-8_7Google Scholar
  33. 33.
    H. Hirschmuller, Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern. Anal. Mach. Intell. 30(2), 328–341 (2008).  https://doi.org/10.1109/TPAMI.2007.1166
  34. 34.
    L. Itti, C. Koch, A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40(10–12), 1489–1506 (2000)CrossRefGoogle Scholar
  35. 35.
    N. Jamali, M. Maggiali, F. Giovannini, G. Metta, L. Natale, A new design of a fingertip for the iCub hand, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 2705–2710.  https://doi.org/10.1109/IROS.2015.7353747
  36. 36.
    S. Kajita, K. Kaneko, F. Kaneiro, K. Harada, M. Morisawa, S. Nakaoka, K. Miura, K. Fujiwara, E.S. Neo, I. Hara, K. Yokoi, H. Hirukawa, Cybernetic human HRP-4C: a humanoid robot with human-like proportions, in Robotics Research: The 14th International Symposium ISRR (Springer, Berlin/Heidelberg, 2011), pp. 301–314. https://doi.org/10.1007/978-3-642-19457-3_18, http://dx.doi.org/10.1007/978-3-642-19457-3_18Google Scholar
  37. 37.
    K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, K. Akachi, Humanoid robot hrp-3, in, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 2471–2478.  https://doi.org/10.1109/IROS.2008.4650604
  38. 38.
    S. Kumar, F. Odone, N. Noceti, L. Natale, Object segmentation using independent motion detection, in IEEE-RAS International Conference on Humanoid Robotics, 2015, pp. 94–100.  https://doi.org/10.1109/HUMANOIDS.2015.7363537
  39. 39.
    P. Lichtsteiner, C. Posch, T. Delbruck, An 128x128 120dB 15μs-latency temporal contrast vision sensor. IEEE J. Solid State Circuits 43(2), 566–576 (2008)CrossRefGoogle Scholar
  40. 40.
    S.C. Liu, T. Delbruck, Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20(3), 288–295 (2010). https://doi.org/10.1016/j.conb.2010.03.007CrossRefGoogle Scholar
  41. 41.
    P. Maiolino, M. Maggiali, G. Cannata, G. Metta, L. Natale, A flexible and robust large scale capacitive tactile system for robots. IEEE Sensors J. 13(10), 3910–3917 (2013).  https://doi.org/10.1109/JSEN.2013.2258149CrossRefGoogle Scholar
  42. 42.
    T. Mar, V. Tikhanoff, G. Metta, L. Natale, Self-supervised learning of grasp dependent tool affordances on the iCub humanoid robot, in IEEE International Conference on Robotics and Automation, pp. 3200–3206 (2015).  https://doi.org/10.1109/ICRA.2015.7139640
  43. 43.
    T. Mar, V. Tikhanoff, G. Metta, L. Natale, Self-supervised learning of tool affordances from 3D tool representation through parallel SOM mapping, in IEEE International Conference on Robotics and Automation, 2016Google Scholar
  44. 44.
    C. Meliza, Y. Dan, Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron 49(2), 183–189 (2006). https://doi.org/10.1016/j.neuron.2005.12.009CrossRefGoogle Scholar
  45. 45.
    G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, L. Montesano, The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw. 23(89), 1125–1134 (2010). Social cognition: from babies to robots. https://doi.org/http://dx.doi.org/10.1016/j.neunet.2010.08.010, http://www.sciencedirect.com/science/article/pii/S0893608010001619.CrossRefGoogle Scholar
  46. 46.
    E. Mingo Hoffman, S. Traversaro, A. Rocchi, M. Ferrati, A. Settimi, F. Romano, L. Natale, A. Bicchi, F. Nori, N.G. Tsagarakis, Modelling and Yarp based plugins for Gazebo simulator, in Simulation for Autonomous Systems: First International Workshop, MESAS 2014 (Springer, Cham, 2014), pp. 333–346. https://doi.org/10.1007/978-3-319-13823-7_29CrossRefGoogle Scholar
  47. 47.
    L. Natale, A. Paikan, M. Randazzo, D.E. Domenichelli, The iCub software architecture: evolution and lessons learned. Front Robot AI 3(24) (2016).  https://doi.org/10.3389/frobt.2016.00024
  48. 48.
    G. Nava, F. Romano, F. Nori, D. Pucci, Stability analysis and design of momentum-based controllers for humanoid robots. In: arXiv:1603.04178 (2016)Google Scholar
  49. 49.
    F. Negrello, M. Garabini, M.G. Catalano, P. Kryczka, W. Choi, D.G. Caldwell, A. Bicchi, N.G. Tsagarakis, WALK-MAN humanoid lower body design optimization for enhanced physical performance, in IEEE International Conference on Robotics and Automation (IEEE, 2016), pp. 1817–1824Google Scholar
  50. 50.
    F. Nori, N. Kuppuswamy, S. Traversaro, Simultaneous state and dynamics estimation in articulated structures, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2015), pp. 3380–3386.  https://doi.org/10.1109/IROS.2015.7353848
  51. 51.
    F. Nori, S. Traversaro, J. Eljaik, F. Romano, A. Del Prete, D. Pucci, iCub whole-body control through force regulation on rigid noncoplanar contacts. Front. Robot. AI 2(6) (2015).  https://doi.org/10.3389/frobt.2015.00006
  52. 52.
    C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C. Borst, A. Albu-Schaffer, B. Brunner, H. Hirschmuller, S. Kielhofer, R. Konietschke, M. Suppa, T. Wimbock, F. Zacharias, G. Hirzinger, A humanoid two-arm system for dexterous manipulation, in IEEE-RAS International Conference on Humanoid Robots, 2006, pp. 276–283.  https://doi.org/10.1109/ICHR.2006.321397
  53. 53.
    A. Paikan, U. Pattacini, D. Domenichelli, M. Randazzo, G. Metta, L. Natale, A best-effort approach for run-time channel prioritization in real-time robotic application, in IEEE-RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 1799–1805.  https://doi.org/10.1109/IROS.2015.7353611
  54. 54.
    A. Paikan, S. Traversaro, F. Nori, L. Natale, A generic testing framework for test driven development of robotic systems, in Modelling and Simulation for Autonomous Systems: Second International Workshop, MESAS 2015 (Springer, Cham, 2015), pp. 216–225. https://doi.org/10.1007/978-3-319-22383-4_17CrossRefGoogle Scholar
  55. 55.
    I.W. Park, J.Y. Kim, J. Lee, J.H. Oh, Mechanical design of humanoid robot platform khr-3 (kaist humanoid robot 3: Hubo), in IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 321–326.  https://doi.org/10.1109/ICHR.2005.1573587
  56. 56.
    A. Parmiggiani, M. Maggiali, L. Natale, F. Nori, A. Schmitz, N. Tsagarakis, J.S.V. Victor, F. Becchi, G. Sandinig, G. Metta, The design of the iCub humanoid robot. Int. J. Humanoid Rob. 09(04), 1250,027 (2012). https://doi.org/10.1142/S0219843612500272CrossRefGoogle Scholar
  57. 57.
    A. Parmiggiani, G. Metta, N. Tsagarakis, The mechatronic design of the new legs of the iCub robot, in IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 481–486.  https://doi.org/10.1109/HUMANOIDS.2012.6651563
  58. 58.
    A. Parmiggiani, M. Randazzo, M. Maggiali, G. Metta, F. Elisei, G. Bailly, Design and validation of a talking face for the iCub. Int. J. Humanoid Rob. 12(03), 1550,026 (2015). https://doi.org/10.1142/S0219843615500267CrossRefGoogle Scholar
  59. 59.
    A. Parmiggiani, M. Randazzo, L. Natale, G. Metta, An alternative approach to robot safety, in IEEE/RSJ International Conference on Intelligen Robots and Systems (IEEE, 2014), pp. 484–489Google Scholar
  60. 60.
    G. Pasquale, C. Ciliberto, L. Rosasco, L. Natale, Object identification from few examples by improving the invariance of a deep convolutional neural network, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016, pp. 4904–4911Google Scholar
  61. 61.
    G. Pasquale, T. Mar, C. Ciliberto, L.A. Rosasco, L. Natale, Enabling depth-driven visual attention on the iCub humanoid robot: instructions for use and new perspectives. Front. Rob. AI 3(35) (2016).  https://doi.org/10.3389/frobt.2016.00035, http://www.frontiersin.org/humanoid_robotics/10.3389/frobt.2016.00035/abstract
  62. 62.
    U. Pattacini, F. Nori, L. Natale, G. Metta, G. Sandini, An experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010.  https://doi.org/10.1109/IROS.2010.5650851
  63. 63.
    G.A. Pratt, M.M. Williamson, Series elastic actuators, in IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 1995, pp. 399–406.  https://doi.org/10.1109/IROS.1995.525827
  64. 64.
    J. Pratt, B. Krupp, Design of a Bipedal Walking Robot, 2008, pp. 69,621F–69,621F–13. https://doi.org/10.1117/12.777973
  65. 65.
    M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Ng, ROS: an open-source robot operating system, 2009. http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
  66. 66.
    N.A. Radford, P. Strawser, K.A. Hambuchen, J.S. Mehling, W.K. Verdeyen, A.S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L.B. Bridgwater, R. Berka, R.O. Ambrose, M.M. Markee, N.J. Fraser-Chanpong, C. McQuin, J.D. Yamokoski, S. Hart, R. Guo, A. Parsons, B. Wightman, P. Dinh, B. Ames, C. Blakely, C. Edmondson, B. Sommers, R. Rea, C. Tobler, H. Bibby, B. Howard, L. Niu, A. Lee, M. Conover, L. Truong, R. Reed, D. Chesney Jr., R.P., G. Johnson, C. Fok, N. Paine, L. Sentis, E.A. Cousineau, R.W. Sinnet, J. Lack, M.J. Powell, B. Morris, A.D. Ames, J. Akinyode, Valkyrie: Nasa’s first bipedal humanoid robot. J. Field Rob. 32(3), 397–419 (2015).  https://doi.org/10.1002/rob.21560CrossRefGoogle Scholar
  67. 67.
    F. Rea, G. Metta, C. Bartolozzi, Event-driven visual attention for the humanoid robot iCub. Front. Neurosci. 7(234) (2013).  https://doi.org/10.3389/fnins.2013.00234
  68. 68.
    F. Rea, G. Sandini, G. Metta, Motor biases in visual attention for a humanoid robot, in IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 779–786.  https://doi.org/10.1109/HUMANOIDS.2014.7041452
  69. 69.
    M. Regoli, U. Pattacini, G. Metta, L. Natale, Hierarchical grasp controller using tactile feedback, in Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2016, pp. 387–394Google Scholar
  70. 70.
    A. Schmitz, M. Maggiali, L. Natale, G. Metta, Touch sensors for humanoid hands, in 19th International Symposium in Robot and Human Interactive Communication, 2010, pp. 691–697.  https://doi.org/10.1109/ROMAN.2010.5598609
  71. 71.
    A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, G. Metta, Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Trans. Rob. 27(3), 389–400 (2011).  https://doi.org/10.1109/TRO.2011.2132930CrossRefGoogle Scholar
  72. 72.
    A. Schmitz, U. Pattacini, F. Nori, L. Natale, G. Metta, Design, realization and sensorization of a dextrous hand: the iCub design choices, in IEEE-RAS International Conference on Humanoid Robots, 2010.  https://doi.org/10.1109/ICHR.2010.5686825
  73. 73.
    V. Tikhanoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, F. Nori, An open-source simulator for cognitive robotics research: the prototype of the iCub humanoid robot simulator, in Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, PerMIS’08 (ACM, New York, 2008), pp. 57–61. https://doi.org/10.1145/1774674.1774684. http://doi.acm.org/10.1145/1774674.1774684
  74. 74.
    R. Tilley Alvin, H. Dreyfuss, S.B. Wilcox, The Measure of Man and Woman: Human Factors in Design. (Wiley, New York, 2002)Google Scholar
  75. 75.
    S. Traversaro, A. Del Prete, S. Ivaldi, F. Nori, Inertial parameters identification and joint torques estimation with proximal force/torque sensing, in IEEE International Conference on Robotics and Automation (IEEE, 2015), pp. 2105–2110.  https://doi.org/10.1109/ICRA.2015.7139476
  76. 76.
    N. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi, L. Righetti, J. Santos-Victor, A. Ijspeert, M. Carrozza, D. Caldwell, iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Adv. Robot. 21, 1151–1175 (2007)CrossRefGoogle Scholar
  77. 77.
    N.G. Tsagarakis, Z. Li, J. Saglia, D.G. Caldwell, The design of the lower body of the compliant humanoid robot cCub, in IEEE International Conference on Robotics and Automation, 2011, pp. 2035–2040.  https://doi.org/10.1109/ICRA.2011.5980130
  78. 78.
    N.G. Tsagarakis, S. Morfey, G.M. Cerda, L. Zhibin, D.G. Caldwell, Compliant humanoid coman: optimal joint stiffness tuning for modal frequency control, in IEEE International Conference on Robotics and Automation (IEEE, 2013), pp. 673–678.  https://doi.org/10.1109/ICRA.2013.6630645
  79. 79.
    G. Vezzani, U. Pattacini, L. Natale, A grasping approach based on superquadric models, in IEEE International Conference on Robotics and Automation, 2016Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Lorenzo Natale
    • 1
  • Chiara Bartolozzi
    • 1
  • Francesco Nori
    • 2
  • Giulio Sandini
    • 3
  • Giorgio Metta
    • 1
  1. 1.iCub FacilityIstituto Italiano di TecnologiaGenovaItaly
  2. 2.iCub Facility, Robotics, Brain and Cognitive Sciences DepartmentIstituto Italiano di TecnologiaGenoaItaly
  3. 3.Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly

Personalised recommendations