Advertisement

Robonaut, Valkyrie, and NASA Robots

  • John Yamokoski
  • Nicolaus Radford
Reference work entry

Abstract

NASA is best known for its historical human missions to the moon in the 1960s and 1970s. Future human missions to other planets, such as Mars, however will involve human-robot teams. These missions will require robots capable of dealing with interfaces designed primarily for human interaction. As such research into humanoid robotic systems has been ongoing at NASA’s Johnson Space Center for the last two decades. This chapter examines the Center’s two most recent humanoid robots: Robonaut 2 and Valkyrie. Specifically discussion will focus on the technologies and advancements that enabled these systems as well as the evolution of that technology from one system to the next. The chapter will conclude with a few remarks on where current development is focusing at JSC and areas where the community can contribute and collaborate on problems aligned with NASA’s long-term space exploration goals.

References

  1. 1.
    Aircraft incident report: auxiliary power unit battery fire, Japan Airlines Boeing 787–8, JA829J. Incident report, National Transportation Safety Board, 01 2013. [Online. Accessed 01 Feb 2016]Google Scholar
  2. 2.
    M.E. Abdallah, R. Platt, C.W. Wampler, Decoupled torque control of tendon-driven fingers with tension management. Int. J. Robot. Res. 32(2), 247–258 (2013)CrossRefGoogle Scholar
  3. 3.
    T.D. Ahlstrom, M.A. Diftler, R.B. Berka, J.M. Badger, S. Yayathi, A.W. Curtis, C.A. Joyce, Robonaut 2 on the international space station: status update and preparations for IVA mobility, in Proceedings of the AIAA SPACE 2013 Conference and Exposition, 2013Google Scholar
  4. 4.
    A. Albu-Schäffer, C. Ott, G. Hirzinger, A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)Google Scholar
  5. 5.
    G. Anderson, Nasa awards two robots to university groups for R&D upgrades, Nov 2015. (Online. Posted 17 Nov 2015)Google Scholar
  6. 6.
    M.A. Diftler, T.D. Ahlstrom, R.O. Ambrose, N.A. Radford, C.A. Joyce, N. De La Pena, A.H. Parsons, A.L. Noblitt, Robonaut 2 initial activities on-board the ISS, in Proceedings of 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–12Google Scholar
  7. 7.
    M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders, R.S. Askew, D.M. Linn, J.D. Yamokoski, F.A. Permenter, et al, Robonaut 2-the first humanoid robot in space, in Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 2178–2183Google Scholar
  8. 8.
    C.-L. Fok, G. Johnson, L. Sentis, A. Mok, J.D. Yamokoski, Controlit! – a software framework for whole-body operational space control. Int. J. Humanoid Robot. 13(1), 1550040 (2015)CrossRefGoogle Scholar
  9. 9.
    R.V. Ham, T.G. Sugar, B. Vanderborght, K.W. Hollander, D. Lefeber, Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)CrossRefGoogle Scholar
  10. 10.
    S. Hart, P. Dinh, K. Hambuchen, Affordance templates for shared robot control, in Artificial Intelligence and Human-Robot Interaction, AAAI Fall Symposium Series, Arlington, 2014Google Scholar
  11. 11.
    S. Hart, R. Grupen, Intrinsically motivated affordance discovery and modeling, in Intrinsically Motivated Learning in Natural and Artificial Systems (Springer, 2013), pp. 279–300Google Scholar
  12. 12.
    S. Hart, J. Yamokoski, M. Diftler, Robonaut 2: a new platform for human-centered robot learning, in Robotics Science and Systems, 2011Google Scholar
  13. 13.
    S. Hart, P. Dinh, J.D. Yamokoski, B. Wightman, N. Radford, Robot task commander: a framework and ide for robot application development. In Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (IEEE, 2014), pp. 1547–1554Google Scholar
  14. 14.
    M. Hoffman, Robotic refueling project of NASA conducted first test at ISS, Feb 2013. (Online. Posted 09 Feb 2013)Google Scholar
  15. 15.
    M. Johnson, J.M. Bradshaw, P.J. Feltovich, C.M. Jonker, B. van Riemsdijk, M. Sierhuis, The fundamental principle of coactive design: interdependence must shape autonomy, in Coordination, Organizations, Institutions, and Norms in Agent Systems VI (Springer, 2011), pp. 172–191Google Scholar
  16. 16.
    K. Kong, J. Bae, M. Tomizuka, A compact rotary series elastic actuator for human assistive systems. IEEE/ASME Trans. Mechatron. 17(2), 288–297 (2012)CrossRefGoogle Scholar
  17. 17.
    L. Li, B. Cox, M. Diftler, S. Shelton, B. Rogers, Development of a telepresence controlled ambidextrous robot for space applications, in Proceedings of 1996 IEEE International Conference on Robotics and Automation, vol. 1 (IEEE, 1996), pp. 58–63Google Scholar
  18. 18.
    N. Paine, J.S. Mehling, J. Holley, N.A. Radford, G. Johnson, C.-L. Fok, L. Sentis, Actuator control for the NASA-JSC valkyrie humanoid robot: a decoupled dynamics approach for torque control of series elastic robots. J. Field Robot. 32(3), 378–396 (2015)CrossRefGoogle Scholar
  19. 19.
    N. Paine, S. Oh, L. Sentis, Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19(3), 1080–1091 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Platt Jr., M. Abdallah, C. Wampler, Multiple-priority impedance control, in Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 6033–6038Google Scholar
  21. 21.
    R. Platt Jr., C. Ihrke, L. Bridgewater, D. Linn, R. Diftler, M. Abdallah, S. Askew, F. Permenter, A miniature load cell suitable for mounting on the phalanges of human-sized robot fingers, in Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 5357–5362Google Scholar
  22. 22.
    R. Platt Jr., F. Permenter, J. Pfeiffer, Using Bayesian filtering to localize flexible materials during manipulation. IEEE Trans. Robot. 27(3), 586–598 (2011)CrossRefGoogle Scholar
  23. 23.
    J. Pratt, B. Krupp, C. Morse, Series elastic actuators for high fidelity force control. Ind. Robot. Int. J. 29(3), 234–241 (2002)CrossRefGoogle Scholar
  24. 24.
    N.A. Radford, C. McQuin, J. Yamokoski et al., Valkyrie: NASA’s first bipedal humanoid robot. J. Field Robot. 32(3), 397–419 (2015)Google Scholar
  25. 25.
    M.E. Stieber, C.P. Trudel, D.G. Hunter, Robotic systems for the international space station, in Proceedings of 1997 IEEE International Conference on Robotics and Automation, vol. 4 (IEEE, 1997), pp. 3068–3073Google Scholar
  26. 26.
    M.E. Taylor, P. Stone, Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)Google Scholar
  27. 27.
    M.M. Williamson, Series elastic actuators. PhD thesis, Massachusetts Institute of Technology, 1995Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Director of Research and DevelopmentHouston Mechatronics, Inc.HoustonUSA
  2. 2.Houston Mechatronics, Inc.KemahUSA

Personalised recommendations